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Abstract  24 

An understanding of the historical range of variability of an ecosystem can improve management 25 

and restoration activities, but this variability depends on the spatial and temporal scale at which it 26 

is measured.  We examined the extent of local-scale variation in vegetation prior to European 27 

settlement across a savannah-forest landscape mosaic on southeastern Vancouver Island, British 28 

Columbia, Canada.  We used phytoliths extracted from soil surface samples to calibrate an index 29 

that differentiates open savannahs from closed canopy Douglas-fir forests and then examined 30 

shifts in this index with soil depth at seven local sites.  We tested whether changes with depth 31 

aligned with known vegetation changes based on land survey records from the mid-1800s, and 32 

then inferred vegetation change prior to European settlement. The log ratio of astrosclereids 33 

(phytolith specific to Douglas-fir) and rondels (phytolith specific to grasses) in soil surface 34 

samples accurately distinguished between current vegetation types, and shifts in this ratio with 35 

depth were sensitive to known historical changes in most of the cores.  Some sites have supported 36 

open savannah vegetation for at least two thousand years, while others that were formerly open 37 

have been filled in by Douglas-fir forest.  However, this infilling appears to have begun at 38 

different times for different sites.  Our findings demonstrate that the degree and timing of 39 

historical variation in vegetation can differ between local sites within a broader regional landscape 40 

that appears relatively stable. 41 

 42 

Keywords  British Columbia · Douglas-fir ·  Garry oak · Historical range of variability ·  43 

Landscape history · Paleoecology  44 
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Introduction 46 

The degree of variation of an ecological system, and the factors driving this variation, depend on 47 

the spatial and temporal scale at which the system is observed.  For example, the vegetation 48 

across a landscape can appear relatively stable, whereas on a patch-level scale there are dynamic 49 

changes (Watt 1947; Gillson 2004).  Similarly, a system may be considered to be at equilibrium 50 

on a temporal scale of centuries although fluctuating from one year to the next (Wiens et al. 51 

2012). Not only does the degree of variation change depending on spatial or temporal scale, but 52 

the drivers of ecological patterns can change (Willis and Whittaker 2002).  For example, the 53 

most important environmental variables predicting species richness have been found to differ 54 

depending on spatial resolution (Rahbek and Graves 2001), and the negative relationship 55 

between the richness of exotic and native species at a regional scale shifts to a positive 56 

relationship at a local scale (Fridley et al. 2007).  Therefore, it is essential to consider scale 57 

explicitly in all studies of ecological systems, with the goal of determining which factors are 58 

most influential in determining ecosystem structure and function at which scales (Willis and 59 

Whittaker 2002; Gillson 2004). 60 

 The role of scale in understanding ecological processes and patterns has important 61 

implications for conservation and restoration.  Land managers often use an ecosystem’s 62 

historical range of variability to provide context for choosing an appropriate restoration goal 63 

(Keane et al. 2009; Wiens et al 2012).  Clearly, the historical range of variability observed in a 64 

system will depend on the spatial and temporal scale at which it is measured (Jackson 2006; 65 

Wiens et al. 2012).  Taking this into account requires the integration of techniques from 66 

historical ecology and paleoecology to bring together lines of evidence with different temporal 67 

and spatial scales (Delcourt and Delcourt 1988; Swetnam et al. 1999; McCune et al. 2013).  Such 68 
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studies often show that the system to be restored was not in a state of equilibrium even prior to 69 

the dramatic changes initiated by European colonization and/or industrialization over the past 70 

few centuries.  In some cases, the conditions managers aimed to conserve were actually 71 

relatively recent formations resulting from climatic changes within the last millennium (Grimm 72 

1983; Hotchkiss et al. 2007).  In others, the changes attributed to recent human disturbance 73 

actually had roots in earlier climatic shifts and/or cultural practices (Swetnam et al. 1999).   74 

 In this study, we aim to measure the extent of local-scale (1 ha or less) vegetation 75 

variation within a landscape mosaic of oak savannah and coniferous forest on southeastern 76 

Vancouver Island, British Columbia, Canada.  The long-term vegetation history of this region is 77 

relatively well-known (McCune et al. 2013).   On a regional scale (300-400km2), pollen records 78 

indicate that oak savannahs have been maintained on the landscape at a consistent and relatively 79 

low level for approximately the past 3,000 years (Heusser 1983; Pellatt et al. 2001).  Work based 80 

on land survey records from the mid-1800s has quantified dramatic increases in tree density 81 

across the landscape and a decline of open savannah habitats since European settlement in the 82 

mid-1800s (Lea 2006; Bjorkman and Vellend 2010).  These changes are attributed to the 83 

destruction of savannahs to make way for agriculture, and widespread fire suppression 84 

(MacDougall et al. 2004; Bjorkman and Vellend 2010).  However, the stability of savannahs in 85 

the centuries prior to the first land surveys on a local spatial scale is not clear.  Was the openness 86 

of the landscape at the time of European settlement a relatively stable condition extending back 87 

centuries or millennia, or was the vegetation already on a trajectory of increasing tree density due 88 

to climatic and/or cultural changes in the centuries before?  Did the amount of variation in 89 

vegetation before settlement differ between local sites?  Our objective was to assess the ability of 90 

a novel paleoecological proxy for this region - the soil phytolith record - to answer these 91 
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questions.  The answers are necessary to provide a more thorough understanding of the historical 92 

range of variability of these systems on a local scale, and the linkages between climate, land use, 93 

and local edaphic conditions in driving vegetation change on this landscape. 94 

 95 

Methods 96 

Description of the study area 97 

The study area is located on the southeastern tip of Vancouver Island, between latitude 48°10’N 98 

and 49°20’N and longitude 123°W and 124°W (Fig. 1).  This region is in the rain shadow of the 99 

Olympic and Vancouver Island Mountains, causing drier conditions than those found anywhere 100 

else along the coast of British Columbia. The climate is described as sub-Mediterranean, with 101 

mild winters and long, dry summers (Meidinger and Pojar 1991) which support dry Coastal 102 

Douglas-fir forests and Garry oak savannahs.    103 

 Coastal Douglas-fir forests are dominated by Douglas-fir (Pseudotsuga menziesii), with 104 

components of western red-cedar (Thuja plicata), grand fir (Abies grandis), red alder (Alnus 105 

rubra) and bigleaf maple (Acer macrophyllum; Egan 1999; Flynn1999). The Garry oak (Quercus 106 

garryana) is at the northern edge of its range here, and has become the flagship species for a 107 

complex of associated vegetation types including savannahs, oak woodlands, and meadows 108 

(Fuchs 2001; GOERT 2011).  Garry oak savannahs consist of an open canopy of oak with an 109 

understory dominated by native wildflowers and grasses.  Over 90% of the Garry oak- associated 110 

vegetation types present just prior to European settlement have been lost to agricultural or urban 111 

land use (Lea 2006).  The remnants are highly fragmented, invaded by introduced exotic species, 112 

and concentrated in higher elevation, rocky areas (Parks Canada Agency 2006; Vellend et al. 113 
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2008).  The few savannahs left on deep soil sites are susceptible to infilling by Douglas-fir in the 114 

absence of fire (Fuchs 2001).   115 

 This region has a rich human history long before the arrival of Europeans.  Indigenous 116 

peoples have lived here for at least 5,000 years (Grier et al. 2009).  Some Garry oak savannahs 117 

were maintained by frequent, low intensity fires set purposely by people (Turner 1999; 118 

MacDougall et al. 2004).  These fires preserved the open conditions that favoured important food 119 

plants like camas (Cammassia spp.; Turner and Kuhnlein 1983; Turner 1999).  Human 120 

management may have contributed to the maintenance of Garry oak savannahs for thousands of 121 

years (Pellatt et al. 2001; McCune et al. 2013).  However, the decimation of the indigenous 122 

population by introduced diseases, and European-enforced fire suppression, put an end to 123 

management by fire (Harris 1994; Turner 1999; MacDougall et al. 2004). 124 

    125 

The phytolith record as a paleoenvironmental indicator 126 

Phytoliths are silica-based microfossils formed when hydrated silicon dioxide is deposited within 127 

and between plant cells (Pearsall 2000).  They remain in the soil upon the decay of plant tissue. 128 

The use of the soil phytolith record for paleoenvironmental interpretation is still young compared 129 

to the use of fossil pollen assemblages from lake or pond sediments (Piperno 1988), and has not 130 

yet been utilized in our study region.  The phytolith record has the advantage of relatively high 131 

spatial resolution due to the limited dispersal of phytoliths (Fredlund 2005). It offers evidence of 132 

vegetation change at a finer spatial resolution to compare with what is already known about 133 

vegetation change in the broader region based on pollen analysis of sediment from Saanich Inlet 134 

and lake cores (e.g. Pellatt et al. 2001; Lucas and Lacourse 2013).    135 
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 The phytolith record preserved in terrestrial soils is formed via the continuous input of 136 

phytoliths to the soil surface combined with organic matter accumulation, weathering of the 137 

parent material, translocation of phytoliths and other materials, bioturbation and other soil-138 

forming processes (Alexandre et al. 1999; Targulian and Goryachkin 2004).  This gradual but 139 

continuous process of phytolith incorporation into the soil profile, called “inheritance” (Fredlund 140 

and Tieszen 1994), can document vegetation shifts as long as major erosional events and deep 141 

soil mixing can be ruled out.  For example, a high concentration of grass-produced phytoliths 142 

throughout a soil profile indicates that grasses have formed a significant proportion of the 143 

vegetation on the site for a considerable length of time (e.g. Evett et al. 2007). The key to 144 

successfully using phytoliths to interpret past vegetation changes is to combine the phytolith 145 

record with independent lines of evidence for vegetation shifts derived from historical or other 146 

paleoecological data.  This way, the sensitivity of the phytolith record to known vegetation 147 

changes, and the reliability of various methods for dating these changes, can be tested before 148 

interpretations are made at other sites. This strategy has already been used successfully by 149 

integrating phytolith studies with legacy data and aerial photographs (McNamee 2013), land 150 

survey records (Evett et al. 2012), written and oral records of vegetation change and fire 151 

occurrence (Morris et al 2009, 2010), palynological data (Piperno 1985; Alexandre et al. 1999; 152 

Okunaka et al. 2012), and data from long-term experiments (Blinnikov et al. 2013).    153 

 154 

Site Selection 155 

We took soil samples from 24 sites within the estimated range of Garry oak savannahs in the 156 

mid-1800s (Lea 2006; Fig. 1, Table 1). We carefully selected sites to include a wide range of 157 

current vegetation types and sites with different histories of post-settlement vegetation change 158 
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based on the first land survey of the Cowichan Valley (Bjorkman 2008; Bjorkman and Vellend 159 

2010).  We included open Garry oak savannahs, “transition” vegetation with oak savannah in 160 

various stages of encroachment by Douglas-fir, and closed canopy Douglas-fir forests.  We also 161 

included two sites that are heavily forested, but with minimal cover by Douglas-fir (plot 16 and 162 

COW4, Table 1).  We chose some sites which have remained Douglas-fir forest or open 163 

savannah since 1859, and some which had a very low density of trees in 1859, but had become 164 

forest by 2007 (Table 1).  We included deep-soil oak savannahs at two protected locations 165 

thought to have been minimally disturbed (e.g. not ploughed) since European settlement:  the 166 

Somenos Garry Oak Preserve (SOM1) and the Cowichan Garry Oak Preserve (NCC2).  The 167 

former is adjacent to a significant archaeological site (Brown 1996).   168 

 In order to characterize the current vegetation, we set up a 20x20m vegetation plot at 169 

each site.  Phytoliths are generally deposited in soil less than 100m from their origin (Fredlund 170 

and Tieszen 1994; Blinnikov et al. 2002); however Douglas-fir phytoliths are rare or absent in 171 

savannah soils 20m distant from the nearest Douglas-fir (McCune and Pellatt 2013).  We 172 

estimated the percent cover of all vascular plant species present in the plot to the nearest 1%.  173 

We took a composite soil surface sample by collecting a small amount of soil from within the top 174 

2 cm (after removing leaf litter) near each of the four corners of the plot.  Finally, we extracted a 175 

5cm diameter soil core from within the plot using a multi-stage sediment sampler with a slide 176 

hammer (AMS, American Falls, ID, USA).  We selected areas for coring that appeared to have 177 

minimal soil disturbance, were relatively flat, and free of visible rocks.   178 

 We took three cores at the Somenos Garry Oak Preserve (SOM1, SOM2, and SOM3) 179 

along a transect proceeding northwards from the open oak savannah at the southern end of the 180 

property (SOM1) up to what is now quite a dense Douglas-fir forest (SOM3).  SOM2 is currently 181 
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in an area with a few very large old Garry oak trees that have been completely surrounded by 182 

younger Douglas-firs (Fig. 2). 183 

    184 

Phytolith extraction, counts and analyses 185 

We chose seven full soil cores to analyze changes in phytolith assemblages with depth (Table 1).  186 

We extracted phytoliths from every second 2cm increment starting with the 0-2cm increment, 187 

excluding the bottom 3cm, and from our composite surface soil samples.  We used a wet 188 

oxidation and heavy liquid flotation procedure modified from Pearsall (2000) to extract 189 

phytoliths (see McCune and Pellatt 2013 for details).  We dried and weighed each sample 190 

following removal of organic material to estimate the inorganic fraction.    191 

 Based on our reference collection of phytoliths produced by plants in the region (McCune 192 

and Pellatt 2013), we counted five phytolith morphotypes:  elongates (produced almost 193 

exclusively by grasses), rondels and bilobates (produced by grasses only), astrosclereids 194 

(sometimes spelled asterosclereids; produced by Douglas-fir only) and “other”.  The final 195 

category included hairbase phytoliths and tracheid phytoliths (produced by multiple species), 196 

conical Carex-type phytoliths, and various rare unknown phytoliths (McCune and Pellatt 2013).  197 

We mounted between 0.5mg and 1.2mg of phytolith extract on a microscope slide in Canada 198 

balsam mounting medium.  We scanned the entire slide at 200x magnification to count the large 199 

astrosclereid phytoliths produced by Douglas-fir.  We then counted other phytolith morphotypes 200 

at 400x magnification across a transect of 16-18 consecutive microscope fields from the centre of 201 

the cover slip to the edge, and used these counts to estimate the number of each morphotype per 202 

slide (McCune and Pellatt 2013). We obtained the mean and standard error for the estimated 203 

number of each phytolith morphotype per slide, and for the ratio of astrosclereids to rondels, 204 
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using a bootstrapping procedure with 1000 runs.  This provided a measure of the precision of our 205 

estimates, which is important when using those estimates to infer vegetation shifts (Strömberg 206 

2009). Bootstrapping was carried out in R (R Core Development Team 2012). We also estimated 207 

concentrations of each morphotype per gram of soil. 208 

 In order to find a phytolith-based metric that reliably distinguished between vegetation 209 

types, we examined the concentration of the five different phytolith morphotypes and the ratio 210 

between astrosclereids and rondels in surface soil samples from the three broad vegetation types.  211 

In the complete soil cores we examined the changes in the best phytolith metric and the weight 212 

of the inorganic soil fraction with depth.   213 

 214 

Radiocarbon dating 215 

Dating vegetation shifts documented in the soil phytolith record is a challenge given the 216 

potentially uneven rate of soil formation.  It is possible to date small amounts of carbon that are 217 

occluded within individual phytoliths, but recent research has shown that young phytoliths can 218 

contain astonishingly old carbon (Santos et al. 2010).  One alternative is to radiocarbon date bulk 219 

soil organic material.  Due to the continued movement of younger carbon down in the soil 220 

profile, this likely represents a more recent age than the average age of the phytoliths in the same 221 

layer (Kerns et al 2001).  We decided to radiocarbon date individual macroscopic charcoal or 222 

wood.  There is some evidence that phytoliths can move downwards in soil more quickly than 223 

charcoal due to their smaller size (Alexandre et al. 1999), in which case phytoliths may be 224 

younger on average than charcoal in the same soil layer.  For this reason, we consider each 225 

radiocarbon date to be a very rough estimate of the age of the phytoliths within the same soil 226 

layer. We did not attempt to build age-depth relationships given our lack of knowledge about the 227 
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rate and consistency of soil formation at our study sites.  For five of the seven complete soil 228 

cores, we obtained radiocarbon dates for 2-3 small pieces of charcoal or wood.  Beta Analytic, 229 

Ltd. (Miami, Florida) determined accelerator mass spectrometry (AMS) 14C ages.  We calibrated 230 

the reported conventional radiocarbon ages with the OxCal calibration program using the 231 

INTCAL09 calibration curve (OxCal version 4.2; Bronk Ramsey 2009; Reimer et al. 2009; 232 

Table 2). 233 

    234 

Results 235 

Surface calibration 236 

The concentration of astrosclereid phytoliths differentiated current vegetation type most clearly 237 

of all the phytolith types we examined:  astrosclereids were almost always absent from surface 238 

soils under savannah vegetation, and the distributions of astrosclereid concentration differed 239 

significantly between all three vegetation types (Fig. 3; Wilcoxon rank sum tests for pair-wise 240 

differences all p<0.05). However, the range of overlap in astrosclereid concentration between 241 

Douglas-fir forest and “transition” sites was quite large (Fig. 4).    242 

 We found that the log ratio of astrosclereids to rondels (ln(A:R)) quite clearly 243 

differentiates the three broad vegetation types, with little overlap (Fig. 5a).  We determined 244 

approximate thresholds between the three vegetation types (Fig. 5).   These thresholds 245 

correspond to approximate astrosclereid:rondel ratios of less than 1:1250 for savannah 246 

vegetation, between 1:1250 and 3:500 for “transition” vegetation, and above 3:500 for Douglas-247 

fir vegetation.  The largest astrosclereid to rondel ratio was approximately 1:10 for plot COW1 248 

(Fig. 5b).   249 
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 Phytoliths can move downwards in the soil profile, the extent of movement being 250 

determined by the type of soil, the amount of precipitation, and the size of phytoliths (Alexandre 251 

et al. 1999; Fishkis et al. 2010a,b). The ln(A:R) ratio is between a very large phytolith (the 252 

astrosclereid, 50-200um) and a very small phytolith (the rondel, 10-20um).  Therefore, 253 

differential movement of these phytoliths in the soil profile based on size could cause shifts in 254 

this ratio independent of vegetation change.  Similarly, phytoliths can eventually dissolve in the 255 

soil, and larger phytoliths might be expected to dissolve more slowly than smaller ones 256 

(Alexandre et al. 1999). However, if these factors were the cause of changes in the ratio, we 257 

would not expect to be able to find patterns such as those observed in COW1 and COW14 cores, 258 

in which a high ln(A:R) ratio is maintained with depth (see below). 259 

    260 

Full core analysis 261 

We assume the average age of the phytolith assemblage is older deeper in the soil cores. The 262 

locations of the seven full soil cores are dominated by strongly acidic dystric brunisols (Jungen 263 

1985).  We do not have evidence that these soils have been aggrading over time, but we consider 264 

the presence of clearly defined soil horizons in five of the seven full cores, and an increase in the 265 

inorganic fraction with depth in all cores, to be evidence against significant soil mixing or the 266 

presence of buried surface horizons (see Online Resource 1).  In addition, in four of the five 267 

cores with radiocarbon dates, older charcoal is found below younger charcoal (Table 2).  We 268 

found a steep decline in phytolith concentration once entering the B horizon of soil cores.  This is 269 

a common pattern of phytolith distribution in intact soils (Jones and Beavers 1964; Hart and 270 

Humphreys 2003).   271 



Page 13 of 36 

 SOM1 and NCC2, current oak savannah sites, both maintain ln(A:R) ratios in the 272 

savannah vegetation range throughout the length of the cores (Fig. 6).  The SOM1 core was 273 

59cm in length in total, and the entire length of the core was dark organic soil (we did not reach 274 

the B horizon). The NCC2 core was 45cm long with an abrupt change from dark, organic soil to 275 

light yellowish, hard clay soil at 12cm.  The deepest charcoal sample from SOM1 (34cm) had a 276 

calibrated age of 1959 years before present (BP, where “present” is considered the year 1950; 277 

Table 2). 278 

  SOM2 is less than 200m away from SOM1 and is currently dominated by young (<100 279 

year old) Douglas-firs surrounding a few very old oaks.  The core was 49cm long with a dark 280 

organic soil from the surface to 14cm, followed by a gradual transition to a yellowish clay 281 

horizon that began around 32cm.  The ln(A:R) ratio begins in the “transition” vegetation zone 282 

near the surface, but then falls below the threshold to savannah levels by 14cm below the surface 283 

(Fig. 6).  A charcoal sample from 22cm depth had a calibrated age of 2013 years BP (Table 2). 284 

 SOM3 and COW14 cores were taken at sites currently dominated by Douglas-fir forests, 285 

but described as “oak plains” or “open pine plains” at the time of the first land survey (Table 1).  286 

The SOM3 core (total length 63cm) had a very shallow layer of dark organic soil about 6cm 287 

deep, followed by a transition to a reddish clay layer from 16-22cm, and then a heavily charred 288 

layer of about 4cm containing charcoal and burnt wood.  Below the charred layer was an abrupt 289 

transition to a yellowish clay horizon at approximately 28cm.  The ln(A:R) ratio is well above 290 

the threshold of Douglas-fir forest until 16cm below the surface, where it drops down into the 291 

“transition” zone (Fig. 6).  A charcoal sample from within the charred layer at 24cm depth had a 292 

calibrated age of 672 years BP.  COW14 also had a shallow layer of dark organic soil for the top 293 
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6cm, and then gradually changed to a yellowish clay layer by about 20cm in depth.  Unlike 294 

SOM3, the ln(A:R) ratio is maintained within the Douglas-fir forest zone (Fig. 6).  295 

 The soil at COW1 was extremely rocky, and we were unable to extract more than 28cm 296 

of soil.  Throughout this core, the ln(A:R) ratio is maintained well into the forest zone (Fig. 6).  297 

The COW2 core had a shallow dark organic layer to 6-8cm below the surface, followed by a 298 

reddish hard clay horizon from 8cm to about 36cm, and then a yellowish clay layer.  The ln(A:R) 299 

ratio in the top 6cm was well above the forest threshold, but then declined into the “transition” 300 

zone (Fig. 6).   301 

    302 

Discussion  303 

Despite the regional-scale maintenance of significant grass and oak pollen over the past 3,000 304 

years, our results suggest that the landscape was not in equilibrium at the time of European 305 

settlement on a local scale.  The two deep-soil sites currently under oak savannahs show no 306 

evidence of Douglas-fir presence for at least the last 2,000 years (SOM1 and NCC2; Fig. 6).   307 

However, three of the five sites now dominated by Douglas-fir show evidence of being more 308 

open in the past, and the increase in Douglas-fir at two of these sites may have predated the 309 

arrival of Europeans. 310 

 The profile for SOM2, just uphill from SOM1, matches expectations for a savannah 311 

recently filled in with Douglas-fir.  The crossing of the ln(A:R) ratio into the “transition” zone 312 

coincides with a charcoal sample dated 181±98 calibrated years BP.  If the charcoal age 313 

accurately estimates the average phytolith age, this shift occurred approximately at the time of 314 

European settlement, or just before (1671-1867AD; Table 2).  This timeframe overlaps with a 315 

particularly wet period that occurred on southern Vancouver Island from the 1560s to the 1760s, 316 
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at the end of the cold period known as the Little Ice Age (Zhang and Hebda 2005). 317 

Dendroecological studies have  documented pulses of oak and Douglas-fir recruitment at various 318 

sites in the region in the early- to mid-1800s, and attribute these pulses to fire suppression, 319 

climatic changes, changes in herbivory levels, or a combination of these factors (Gedalof et al. 320 

2006; Dunwiddie et al. 2011).   The coincidence of the wet period with changes in human 321 

management due to the population decline of indigenous peoples and land appropriation by 322 

Europeans make it difficult to disentangle which was responsible for the infilling of the savannah 323 

at SOM2.  This is a challenge in other areas of North America as well (e.g. Millar and 324 

Woolfenden 1999).  325 

 The SOM3 site is currently a Douglas-fir forest with little grass cover, which is reflected 326 

in the high ln(A:R) ratio in the surface soil.  However, by 16cm below the soil surface, the ratio 327 

has dropped into the “transition” zone (Fig. 6).  The shift occurs above a charcoal fragment dated 328 

at 672 calibrated years BP (1250-1306AD), but below charcoal dated at 119 calibrated years BP 329 

(1751-1911AD; Table 2).  This indicates that the transition may have happened well before 330 

European settlement in the region, possibly triggered by the onset of the Little Ice Age climate 331 

anomaly, which brought higher precipitation and lower growing season temperatures from 332 

approximately 1400AD (Mann et al 2009).  Several charcoal and tree ring-based studies have 333 

found reduced fire frequencies in the region during this time (e.g. Brown and Hebda 2002; Lucas 334 

and Lacourse 2013), which would favour increased recruitment of Douglas-firs. It is curious that 335 

the entire landscape east of Somenos Lake is described as “oak plains” on the 1859 map given 336 

this potential increase in Douglas-fir at SOM3 well before the original surveys (Fig. 2).  337 

However, the bearing tree for the gridline intersection nearest SOM3 was a Douglas-fir, as was 338 

the bearing tree for the next three intersections heading north.  The surveyor’s description at the 339 
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intersection less than 500m north of SOM3 reads: “oak and pine plains, excellent land”.  It is 340 

clear that there was a significant presence of Douglas-fir in this area at the time. 341 

 The COW14 core was taken from a site described as “open pine plains” in 1859, which 342 

now has a forest density of over 1300 trees/ha (Table 1).  However, the ln(A:R) ratio remains at a 343 

high level throughout the depth of this core (Fig. 6).  This suggests Douglas-fir forest has existed 344 

here for many centuries, which does not match with historical descriptions of a “pine plain” in 345 

1859.  These “pine plains” were described by a surveyor as “land of the best quality, open, and 346 

little wood upon it, which usually grows in clumps with an occasional isolated tree” (Bjorkman 347 

2008).   It is possible that long-term “pine plains” can produce ln(A:R) ratios as high as Douglas-348 

fir forests, but “pine plains” are practically nonexistent on the landscape in the present.  They 349 

represent a sort of no-analog community, for which we do not have a contemporary example 350 

with which to calibrate the surface soil phytolith ratio (Williams and Jackson 2007).    351 

 The COW1 core had the highest level of astrosclereids of all samples, and maintains a 352 

ln(A:R) ratio well into the forest zone throughout its length (Figs. 4,6).  We consider this 353 

evidence that this site has been dominated by Douglas-fir since well before European settlement.  354 

COW2, on the other hand, shows a decline in the ln(A:R) ratio into the “transition” zone by 8cm 355 

below the surface (Fig. 6).  The charcoal sample at 12cm yielded a radiocarbon date older than 356 

one near the base of the core (Table 2), indicating potential soil mixing, so we cannot estimate 357 

when this more open phase in the history of COW2 occurred.  However, this site is on the 358 

western boundary of the estimated historical range of Garry oak savannah (Fig. 1), and it is quite 359 

possible that this now forested location was more open before the surveyors came through, and 360 

may have begun filling in with Douglas-fir due to climatic change centuries before, as observed 361 

for SOM3. 362 
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 We suggest that a high concentration of astrosclereids sustained deeper in the soil profile 363 

indicates a longer time period of Douglas-fir presence.  This explains mismatches observed 364 

between the ln(A:R) ratio in soil surface samples and current vegetation.  For example, sites like 365 

COW12, currently dominated by Douglas-fir but with a surface ln(A:R) ratio in the transition 366 

zone, are likely actually “transition” sites that have been filled in by Douglas-fir relatively 367 

recently (Fig. 5b).  The concentration of astrosclereids in the soil surface seems to correspond 368 

well with the relative length of time of Douglas-fir dominance of a site (compare Figs. 4 and 6). 369 

 370 

Conclusions 371 

Our results echo many other studies that have found that the North American landscape was not 372 

in a stable equilibrium prior to European settlement (e.g. Sprugel 1991; Lynch 1998; Hotchkiss 373 

et al. 2007).  The trends we observed in the phytolith record are consistent with the idea that the 374 

extensive open landscape documented in the first European land surveys was not a long-term 375 

stable condition, but had already begun to see an increase in Douglas-fir density at some sites 376 

prior to those surveys.  European settlement brought about a dramatic acceleration of this trend, 377 

leading to the current high levels of endangerment for species adapted to open conditions.    378 

 Swetnam et al. (1999) cautioned that the vegetation history of specific locations and 379 

ecosystems often cannot be extrapolated from broader scale regions.  Our findings exemplify 380 

this, showing that the amount of variation in vegetation before settlement differs depending on 381 

which local site was examined.  On a local spatial scale different sites show different histories in 382 

terms of the balance and timing of shifts between savannah and Douglas-fir forest.  In addition, 383 

changes on a local scale at one site are not always synchronous with other sites (Delcourt and 384 

Delcourt 1988; Lynch 1998; Hotchkiss et al. 2007).  Further work with phytoliths in this region 385 
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could solidify the relationship between the concentration of astrosclereids in the surface soil and 386 

the relative timing of Douglas-fir infilling.  We can then test for links between the timing of 387 

afforestation and landscape factors, such as soil depth, elevation, slope, and proximity to 388 

important indigenous villages or harvesting grounds.  This will make it possible to understand 389 

what has driven the historical variability in vegetation on this landscape at a local scale, and 390 

perhaps direct restoration activities towards sites that have been transformed most recently. 391 
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Figure Captions 567 

 568 

Fig.1 Location of southeastern Vancouver Island, including the Cowichan Valley and the 569 

Saanich Peninsula, on the west coast of North America (inset).  The shaded area indicates the 570 

range of savannah vegetation as quantified from the first land surveys. Symbols indicate the 571 

locations of 24 soil samples. Sites where full soil cores were analyzed are labelled 572 

 573 

Fig. 2 Location of soil cores taken from the Somenos Garry Oak Preserve.  The left panel shows 574 

the landscape in a map drawn in 1859, and the right panel shows the landscape as seen in a 575 

recent aerial photo.  The description on the 1859 map to the East of Somenos Lake reads “Oak 576 

Plains”.  Non-marshy sites that are currently still naturally vegetated have mostly become filled 577 

in with thick Douglas-fir forest (darkest areas in right panel) 578 

 579 

Fig. 3 Differences in total phytoliths per gram of surface soil estimated for each phytolith 580 

morphotype by vegetation type: Douglas-fir dominated forest (“forest”), “transition” or “other” 581 

vegetation types (“trans/oth”), and Garry oak savannah (“savannah”). Note that the scale of the y 582 

axis differs for each plot. Different letters above the boxes indicate significantly different 583 

distributions according to pairwise Wilcoxon rank sum tests 584 

 585 

Fig. 4 The number of astrosclereid phytoliths (thousands per gram of soil) in soil surface samples 586 

plotted against the difference between the total percentage cover of Douglas-fir and the total 587 

percentage cover of all grasses within each 20x20m plot.  Sites where full soil cores were 588 

analyzed are labelled 589 
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 590 

Fig. 5 (a) The log ratio of astrosclereid to rondel phytoliths in surface samples by vegetation 591 

type: Douglas-fir dominated forest (“forest”), “transition” or “other” vegetation (“trans/oth”), 592 

and Garry oak savannah (“savannah”) (b) The log ratio of astrosclereid to rondel phytoliths in 593 

surface soil samples plotted against the difference between the total percentage cover of 594 

Douglas-fir and the total percentage cover of all grasses within the plot. Dotted lines are the 595 

estimated thresholds between vegetation types. Error bars show ± the bootstrapped standard 596 

error. Samples have more than one estimate if their composite surface soil sample and the 0-2cm 597 

increment of the soil core were both analyzed 598 

 599 

Fig. 6 Change with depth below the soil surface in the log of the ratio of astrosclereid to rondel 600 

phytoliths in the seven soil cores.  Dotted lines indicate the estimated thresholds between 601 

savannah vegetation (below lowest line), “transition” vegetation (between the two lines), and 602 

Douglas-fir forest (above the top line).  Symbols indicate the present vegetation type of the plot 603 

from which each core was taken.  Error bars are ± the bootstrapped standard error. Samples have 604 

more than one estimate at 0cm if the composite surface soil sample and the 0-2cm increment of 605 

the soil core were both analyzed.  The phytolith ratio is not plotted past the point where phytolith 606 

concentration declined below 500,000 phytoliths per gram of soil, as estimates become less 607 

accurate.  Depth below surface should not be considered a surrogate for time before present, as 608 

the length of cores and the depth at which phytolith concentration tapered off differ for each core 609 

 610 

 611 

 612 
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Figures  614 
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Figure 2 625 
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Figure 6 649 
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Tables  659 

Table 1: Site location and characteristics of the 24 sampled sites, ordered from open savannah sites through closed canopy Douglas-fir 660 

sites. Sites in bold are cores for which sub-surface soil layers were analyzed.  The 1859 and 2007 descriptions and tree density are 661 

shown when available for full cores only, as determined by Bjorkman (2008) 662 

Site name Location 
(Latitude/Longitude, 
decimal degrees) 

Percent cover 
grasses 

Percent cover 
Douglas-fir 

Percent cover 
Garry oak 

Current vegetation 
type 

1859  
Surveyor Description  

2007  
Description  

316 
 

48.491426/-123.346108 100 0 55 savannah   

304 
 

48.491758/-123.346873 95 0 85 savannah   

SOM1 48.790096/-123.697797 80 0 80 savannah oak plains 
 (<102 trees/ha) 

open savannah  

330 
 

48.445731/-123.355471 72 0 40 savannah   

NCC2 
 

48.807193/-123.632094 65 0 90 savannah rich oak plains  
(<102 trees/ha) 

open savannah 

303 
 

48.490301/-123.34473 44 0 85 savannah   

335 
 

48.546421/-123.40583 11 0 25 savannah   

363 
 

48.610067/-123.443593 44 35 35 transition   

356 
 

48.611696/-123.441934 17 10 32 transition   

16 
 

48.497894/-123.345376 0 5 0 othera   

COW4 
 

48.805237/-123.732968 1 12 0 othera   

288 
 

48.544552/-123.399784 42 70 0.5 transition   

108 
 

48.47925/-123.449628 8 40 20 transition   

365 
 

48.613227/-123.45248 17 55 0.5 transition   
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COW12 
 

48.822967/-123.602714 1 55 0 forest   

SOM2 48.791246/-123.699469 1 60 3 transition oak plains  
(< 102 trees/ha) 

young Douglas-fir  
(232 trees/ha) 

COW10 
 

48.784177/-123.644108 0.5 65 0 forest   

COW14 48.740475/-123.644616 0.5 70 0 forest open pine plainsb 
(<102 trees/ha) 

dense Douglas-fir  
(1369 trees/ha) 

163 
 

48.630271/-123.477194 0.5 80 0 forest   

SOM3 48.791687/-123.699275 1 85 0 forest oak plains  
(<102 trees/ha) 

open Douglas-fir  

COW7 
 

48.814114/-123.671741 0.5 85 0 forest   

COW2 48.806341/-123.783417 0.5 85 0 forest heavily timbered 
(405-700 trees/ha) 

open Douglas-fir 
 (378 trees/ha) 

COW1 48.799319/-123.809655 0.5 85 0 forest thick heavy timber (405-700 
trees/ha) 

dense Douglas-fir  
(1297 trees/ha) 

57 
 

48.517584/-123.388316 0 90 0 forest   

a “other” plots are forest plots not dominated by Douglas-fir.  COW4 is dominated by bigleaf maple, and plot 16 is dominated by 663 

grand fir. 664 

bNote that the 1859 land surveyors used the term “pine plains” to describe open grasslands dotted with a low density of Douglas-fir 665 

trees; they referred to Douglas-fir as a “pine” (Bjorkman and Vellend 2010). 666 

 667 

 668 

 669 

 670 
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Table 2:  AMS (accelerator mass spectrometry) radiocarbon and calibrated calendar ages of charcoal or wood samples from soil cores  671 

Core Depth below 

surface (cm) 

Lab number Material Radiocarbon age  

(14C years BP ± 1σ) 

Calendar age  

(cal years BP)a 

SOM1 12 Beta-322820 charred material 60 ± 30 93 ± 77 

SOM1 34 Beta-327609 charred material 2010 ± 30 1959 ± 38 

SOM2 10 Beta-322821 wood 220 ± 30 181 ± 98 

SOM2 22 Beta-322822 charred material 2050 ± 30 2013 ± 48 

SOM3 4 Beta-327610 charred material 120 ± 30 119 ± 80 

SOM3 24 Beta-322824 charred material 720 ± 30 672 ± 28 

COW2 12 Beta-351518 charred material 3269 ± 30 3480 ± 44 

COW2 24 Beta-350718 charred material 2390 ± 30 2417 ± 78 

COW2 48 Beta-350719 charred material 3280 ± 30 3509 ± 40 

COW14 16 Beta-350720 charred material 1850 ± 30 1784 ± 43 

COW14 24 Beta-350721 charred material 2860 ± 30 2978 ± 53 

ashown is the median age ± 1σ with 95.4% probability as calibrated by OxCal (Bronk Ramsey 2009). 672 


