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Summary

� Leaf spectra are integrated foliar phenotypes that capture a range of traits and can provide

insight into ecological processes. Leaf traits, and therefore leaf spectra, may reflect below-

ground processes such as mycorrhizal associations. However, evidence for the relationship

between leaf traits and mycorrhizal association is mixed, and few studies account for shared

evolutionary history.
� We conduct partial least squares discriminant analysis to assess the ability of spectra to pre-

dict mycorrhizal type. We model the evolution of leaf spectra for 92 vascular plant species

and use phylogenetic comparative methods to assess differences in spectral properties

between arbuscular mycorrhizal and ectomycorrhizal plant species.
� Partial least squares discriminant analysis classified spectra by mycorrhizal type with 90%

(arbuscular) and 85% (ectomycorrhizal) accuracy. Univariate models of principal components

identified multiple spectral optima corresponding with mycorrhizal type due to the close rela-

tionship between mycorrhizal type and phylogeny. Importantly, we found that spectra of

arbuscular mycorrhizal and ectomycorrhizal species do not statistically differ from each other

after accounting for phylogeny.
� While mycorrhizal type can be predicted from spectra, enabling the use of spectra to iden-

tify belowground traits using remote sensing, this is due to evolutionary history and not

because of fundamental differences in leaf spectra due to mycorrhizal type.

Introduction

Spectranomics is an emerging field of research that links the
spectral-optical properties of leaves with plant trait and species
diversity (Asner & Martin, 2009, 2016; Ustin & Gamon, 2010).
Leaf traits, such as pigment or nutrient concentrations, influence
how light is absorbed, reflected, and transmitted through the leaf,
resulting in distinctive spectra (Gates et al., 1965; Knipling, 1970;
Curran, 1989; Ustin & Jacquemoud, 2020). Therefore, leaf spec-
tra can be viewed as integrated foliar phenotypes, capturing a
wide range of functional traits that can provide insights into key
ecological processes (Kokaly et al., 2009; Cavender-Bares et al.,
2016, 2017; Schweiger et al., 2017, 2018; Wang et al., 2020;
Kothari & Schweiger, 2022). Because individual species exhibit
distinct combination of traits, they can often be differentiated
using spectra, enabling the spectral estimation of plant diversity
(Clark et al., 2005; Ustin & Gamon, 2010; Feret & Asner, 2013;

Asner et al., 2014; Cavender-Bares et al., 2016; Schweiger &
Lalibert�e, 2022). Spectranomics allows for the use of remote sen-
sing technologies to map and monitor biodiversity at broad
spatial scales and in a spatially explicit manner (Asner &
Martin, 2016). By providing more comprehensive estimations of
species and trait diversity, spectranomic tools could revolutionize
biodiversity detection and monitoring. Linking leaf-level spectra
with broader ecological processes at regional scales and in an evo-
lutionary context will also improve our understanding of how
biodiversity has evolved and is responding to a changing climate.

It has been hypothesized that leaf traits, and therefore leaf
spectra, can reflect belowground processes such as mycorrhizal
associations (Wardle et al., 2004; Madritch et al., 2014, 2020;
Fisher et al., 2016; Sousa et al., 2021; Cavender-Bares et al.,
2022). Mycorrhizal associations can influence nutrient uptake
(Tedersoo & Bahram, 2019; Chen et al., 2021), foliar nitrogen
levels (Craine et al., 2009), nitrogen and phosphorus economic
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strategies (Averill et al., 2019), and other leaf economic spectrum
traits (Shi et al., 2020). Species with different mycorrhizal types
may exhibit specific trait combinations or syndromes due to the
impact of this symbiotic relationship on nutrient availability and
uptake (Read, 1991; Cornelissen et al., 2001). Studies have high-
lighted differences in leaf traits between species with arbuscular
mycorrhizal (AM), ectomycorrhizal (EM), ericoid (ErM), and/or
nonmycorrhizal (NM) strategies (Cornelissen et al., 2001; Hayes
et al., 2014; Averill et al., 2019). This relationship between
mycorrhizal type and leaf traits contributes to the remote sensing
of belowground plant traits via the spectral properties of canopies
(Madritch et al., 2014, 2020; Cavender-Bares et al., 2022).
Recent studies have demonstrated that remotely sensed spectra
can discriminate between AM and EM tree species in temperate
North American forests and two Hawaiian forest sites (Fisher
et al., 2016; Sousa et al., 2021).

The relationship between mycorrhizal type and leaf spectra
may be influenced by other traits such as growth form or leaf
persistence. Functional groups, such as growth forms (i.e.
woody, forb, and graminoid) and leaf persistence types (ever-
green vs deciduous), exhibit differences in leaf traits within
mycorrhizal types (Cornelissen et al., 2001). These functional
groups may experience different evolutionary pressures due to
different approaches to resource allocation and growth and
reproductive strategies that may be reflected in leaf traits and,
therefore, leaf spectra (Ackerly, 2009; Flores et al., 2014). For
instance, when comparing annuals (typically herbaceous plants)
to deciduous and evergreen woody plants, annuals tend to have
higher growth rates, higher rates of carbon uptake, and have
low mass per unit area, while deciduous woody plants and ever-
green woody plants have successively lower growth rates, and
lower rates of carbon uptake and higher leaf mass per area
(Wright et al., 2004; D�ıaz et al., 2013; Reich, 2014; Ustin &
Jacquemoud, 2020). Therefore, investigations of the impact of
mycorrhizal type on leaf traits should factor in these functional
group variables. Additionally, given that in our dataset, conifer
species are predominantly EM while angiosperms are more
likely to be AM, with few origins of the EM mycorrhizal type
within angiosperms, this conifer–angiosperm split may also
impact the observed relationship between leaf spectra and
mycorrhizal type.

When comparing traits between species, it is important to
account for the statistical nonindependence of trait data due to
shared evolutionary history, as explained by Felsenstein (1985).
Because species are related through the process of evolution, clo-
sely related species tend to have more similar traits than more dis-
tantly related species. As a result, traits measured for one species
are not independent of traits measured for another so species
should not be treated as if they were sampled independently from
the same distribution (Felsenstein, 1985; Uyeda et al., 2018).
Because this nonindependence can impact the significance of trait
relationships, studies which do not account for phylogenetic
relatedness may overstate trait correlations or differences between
groups, or misattribute phylogenetic correlation with a biological
mechanism. In other words, ignoring phylogeny can result in
type I errors, or false positives, where apparent support for a

correlation, for example, would be due to this violation of statisti-
cal assumptions. As an example of this phenomenon, while two
studies that did not account for phylogeny found significant dif-
ferences in leaf traits between mycorrhizal types (Cornelissen
et al., 2001; Hayes et al., 2014), a third study that did account
for phylogeny found no significant relationship between leaf
nutrients and mycorrhizal type (EM vs non-EM; Koele
et al., 2012). This suggests that there is a strong phylogenetic
influence on the significance of this relationship and that non-
phylogenetic studies may be overestimating the significance of
differences in leaf traits between these mycorrhizal types (but see
Averill et al., 2019). In other words, studies that observe signifi-
cant relationships between leaf traits and mycorrhizal type with-
out accounting for phylogeny may be misattributing trait
variation associated with shared evolutionary history to mycorrhi-
zal type. Furthermore, if there is no significant relationship
between leaf traits and mycorrhizal type after accounting for phy-
logeny, then any differences in leaf traits between mycorrhizal
types detected by other methods (e.g. partial least squares discri-
minant analysis (PLS-DA)) may be the result of other factors
linked to phylogeny.

Over the past 40 yr, phylogenetic comparative methods
(PCM) have been developed and applied to answer evolutionary
questions while accounting for phylogenetic correlation (Felsen-
stein, 1985; Blomberg & Garland, 2002; Blomberg et al., 2003;
Butler & King, 2004; Beaulieu & O’Meara, 2014; Cornwell &
Nakagawa, 2017). However, until recently, application of these
methods to high-dimensional multivariate traits, such as spectra,
had been limited (Adams & Collyer, 2018; Clavel & Mor-
lon, 2020). New methods implement PCM in a penalized likeli-
hood framework (rather than a maximum likelihood framework)
that allows for the application of these methods to highly dimen-
sional data where the number of traits exceeds the number of taxa
(Clavel et al., 2019; Clavel & Morlon, 2020). Spectra, which are
highly complex, multidimensional data, are also affected by auto-
correlation, where reflectance values are correlated among neigh-
boring wavelengths. These new methods, originally developed to
analyze morphometric data (Clavel et al., 2019; Clavel & Mor-
lon, 2020; Olivares et al., 2020; Reich et al., 2020; Artuso
et al., 2021; Bardua et al., 2021), are well-suited to dealing with
this issue of autocorrelation and allow for testing different evolu-
tionary models. The default model for PCM is often assumed to
be Brownian Motion (BM), where trait values vary randomly
along the phylogeny (Felsenstein, 1985). However, other models
may be better approximations of the evolutionary history of spec-
tra; for example, Meireles et al. (2020) identified the Ornstein–
Uhlenbeck (OU) model, where trait values are pulled toward an
optimum by selective forces, as the model that best fits spectral
data.

In this study, we assess whether leaf spectra can be used to
accurately predict mycorrhizal type, and whether spectral varia-
tion is associated with different mycorrhizal types. We focus on
AM and EM species, which represent the majority of species both
globally and in our spectral dataset (Tedersoo, 2017). We test the
hypothesis that AM and EM species will differ in their spectral
characteristics due to the relationships between mycorrhiza and
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leaf nutrients, and between leaf nutrients and leaf spectra. Specifi-
cally, we ask: can leaf spectra be used to predict mycorrhizal
type?; can evolutionary modeling of spectra reveal selective pres-
sures on traits underlying spectra of AM and EM species?; and,
are there significant differences in leaf spectra between AM and
EM plant species when accounting for phylogeny?

Materials and Methods

Spectral data

Spectral data were collected by the Canadian Airborne Biodiver-
sity Observatory (CABO) between 2018 and 2019 (Supporting
Information Table S1). Sampling locations were concentrated
in southern Quebec and Ontario, and coastal British Columbia
(see Tables S2, S3 for details of species and locations). Spectral
measurements were conducted as described by Lalibert�e &
Soffer (2018a,b). Directional–hemispherical reflectance spectra
were measured using an HR-1024i spectroradiometer with a
DC-R/T integrating sphere from Spectra Vista Corp. (SVC,
Poughkeepsie, NY, USA) with measurements calibrated against
a white Spectralon 99% reflectance panel (Labsphere, North
Sutton, NH, USA) and corrected for stray light. Spectra were
measured for the adaxial surface of six sunlit leaves per indivi-
dual in the field. For plants with leaves too small or narrow
(e.g. needles), single-layer leaf arrays were used instead (Noda
et al., 2013; Lalibert�e & Soffer, 2018b). Healthy and intact
leaves were selected, avoiding leaves with herbivore or pathogen
damage.

Reflectance spectra were processed in R using the package SPEC-

TROLAB v.0.0.10 (Meireles et al., 2017) following the protocol by
Schweiger & Lalibert�e (2020). We used linear interpolation to
resample spectra to 1-nm resolution and interpolate across the
region of overlap between sensors. Spectra were averaged to give
a single mean spectrum per individual. A Savitzky–Golay filter
(Table S4) was applied to spectra to reduce noise using the pack-
age SIGNAL 0.7.6 (Signal Developers, 2013), and spectra were
trimmed to remove noisier wavelengths resulting in final spectra
from 400 to 2400 nm.

The final spectral dataset contained 92 species from 27 families
of vascular plants matching taxa from the trait datasets, including
mycorrhizal type, and the reconstructed phylogeny. Taxonomy
corresponds to the Database of Vascular Plants of Canada (VAS-

CAN; Brouillet et al., 2010; Desmet & Brouillet, 2013). The
number of spectral samples vary by species, ranging between
one and 120 spectral samples per species (mean = 17.93,
SD = 21.33). While not all species were sampled from multiple
locations, species with samples from multiple locations are spread
across the phylogeny (Fig. S1) and include both mycorrhizal
types (Fig. S2). Additionally, most locations included both AM
and EM species (Fig. S3). The impact of intraspecific variation
due to environmental conditions was also expected to be much
smaller than interspecific variation (Asner et al., 2014), as found
in a subset of our dataset (Beauchamp-Rioux, 2022). Full spectra
(wavelengths 400–2400 nm) were used for analyses unless other-
wise specified (e.g. spectral regions for phylogenetic signal, or

principal components of spectra for univariate models). Mean
spectral reflectance for each species was used for the multivariate
and univariate spectral modeling analyses, while spectra from
individual samples were used for the PLS-DA.

Phylogenies

Phylogenetic analyses were conducted in BEAST v.2.6.3 (Drum-
mond et al., 2012; Bouckaert et al., 2019) to generate a distribu-
tion of phylogenies from which 100 trees were randomly selected
for analysis. A maximum clade credibility (MCC) tree was gener-
ated from the posterior distribution of trees. Each phylogeny was
pruned to 92 species to match the trait and spectral dataset. A full
description of the methods used to generate these phylogenies is
available in Methods S1, Tables S5–S7 and Figs S4 and S5.

Predictor data

Species-level mycorrhizal types were retrieved from the FUNGAL-

ROOT database (Soudzilovskaia et al., 2020) and additional
published sources (Table S8). The most probable primary
mycorrhizal type was assigned based on species-level root obser-
vations. Conflicting data on mycorrhizal type at the species level
were resolved based on expert knowledge (Soudzilovskaia
et al., 2020). When information was not available at the species
level, the mycorrhizal type was inferred from a higher taxonomic
level (i.e. genus, or in the case of Oemleria cerasiformis (Torrey &
A. Gray ex Hooker & Arnott) J.W. Landon, family) following
Soudzilovskaia et al. (2020). Each species was scored as having
arbuscular (AM), ericoid (ErM), ectomycorrhizal (EM), dual
AM–EM, or no documented (NM) mycorrhizal association. We
excluded species with ErM (three species) and dual AM–EM
(three species) mycorrhizal types and those scored as NM (one
species) due to the few species with each of these types preventing
informative statistical analysis, resulting in 92 species with
mycorrhizal data. Growth form (i.e. habit) and taxonomic data
were retrieved from VASCAN (Brouillet et al., 2010; Desmet &
Brouillet, 2013) for each species using the vascan_search function
in the R package TAXIZE (Chamberlain & Szocs, 2013; Chamber-
lain et al., 2020). Growth form was encoded as a three-state cate-
gorical variable (tree, shrub, and herb). Taxonomic information
was parsed, and four taxonomic levels were retained: class, sub-
class, superorder, and order. Leaf persistence data (binary vari-
able, evergreen vs deciduous) were obtained from the TOPIC

database (Aubin et al., 2012). For species not represented in the
TOPIC database, trait values were compiled from electronic floras
and databases (Flora of North America Editorial Commit-
tee, 2012; Klinkenberg, 2021; USDA & NRCS, 2022).

Leaf trait data

Five leaf traits were measured for 91 species: nitrogen and lignin
content (per unit mass), and Chla and Chlb, and carotenoid con-
tent (per unit area) according to published protocols (Ayotte
et al., 2018; Ayotte & Lalibert�e, 2019; Girard et al., 2020). Leaf
mass per area (LMA) and equivalent water thickness (EWT) were
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measured for all 92 species (Lalibert�e, 2018; Schweiger
et al., 2020; Kothari et al., 2022).

Partial least squares discriminant analysis

Partial least squares discriminant analysis was conducted in R
v.3.6.1 to determine whether spectra from AM species can be dis-
criminated from spectra of EM species using the packages CARET,
STATS, and AGRICOLAE (R Core Team, 2019; Kuhn, 2020; de
Mendiburu, 2021; Wei & Simko, 2021). Partial least squares dis-
criminant analysis was conducted with the full dataset (92 spe-
cies) and with only angiosperms (80 species). Individual spectral
samples were split into training and testing datasets (75% and
25%, respectively, for each mycorrhizal type). The number of
spectral components used was determined based on significant
differences in kappa statistics as determined by the Tukey’s test
(Figs S6, S7; Schweiger, 2022); we ran 100 iterations for 19 com-
ponents for all 92 taxa, and 20 components for angiosperms
only.

Phylogenetic signal of predictors and spectra

The distributions of trait values for the predictor variables
(mycorrhizal type, growth form, and leaf persistence) across the
phylogeny were visualized using the MCC tree. For binary traits
(leaf persistence and mycorrhizal type), phylogenetic signal was
measured as the phylogenetic D statistic, as calculated using the
phylo.d function in the R package CAPER (Orme et al., 2018). Phy-
logenetic signal for the categorical variable (growth form) was
measured as delta, as described and coded by Borges et al.
(2018).

Phylogenetic signal was calculated for spectral data using the
multivariate metric of Blomberg’s K, Kmulti, using GEOMORPH

v.4.0.0 (Blomberg et al., 2003; Adams & Ot�arola-Castillo, 2013;
Adams, 2014; Baken et al., 2021; Adams et al., 2022), for each of
the spectral regions (VIS, visible; NIR, near infrared; SWIR,
shortwave infrared) and each class, subclass, superorder, and
order with more than two species for each of the randomly
sampled 100 phylogenetic trees. Significance was assessed
from comparison with a null distribution generated from 999
permutations.

Models of spectral evolution

Multivariate models Using the R package MVMORPH (Clavel
et al., 2015), the evolutionary dynamics of spectra were modeled
using regressions of spectra against the intercept for four evolu-
tionary models over 100 randomly selected phylogenies. These
methods, which can be applied to multivariate datasets with more
traits than taxa, are implemented in a penalized likelihood frame-
work rather than a maximum likelihood framework to ensure
that the covariance matrix is symmetric-positive definite and
invertible (Clavel et al., 2019). The evolutionary models used to
quantify the covariance in the regression include pure BM, where
the covariance structure is based on shared branch lengths on the
phylogeny, or models where the covariance structure is modified

due to selection toward an optimum (Ornstein–Uhlenbeck (OU)
model), decreasing evolutionary rate over time (Early Burst (EB)
model), or other processes that may produce phylogenetic signal
that deviates from pure BM (lambda model). The best fit model
for each tree was determined using Generalized Information Cri-
terion (GIC; Konishi & Kitagawa, 1996).

Univariate models Phylogenetic principal component (pPC)
axes represent univariate components of spectral variation that
can be modeled using more complex evolutionary models avail-
able in the R package OUWIE (Beaulieu & O’Meara, 2021). These
models can identify single or multiple rates of evolution (for BM
and OU evolutionary models) and single or multiple optima
(OU models). Incorporating these more complex models helps
tease apart different selective pressures on these components of
spectral variation by identifying whether multiple rates or optima
may correspond to different predictor trait states. Phylogenetic
principal components analysis (pPCA), incorporating the
intercept-based variance–covariance matrices, was conducted
using the mvgls.pca function in MVMORPH (Clavel et al., 2015).
The top pPC axes that explained 99% of the spectral variation
were retained for statistical analysis.

Univariate models were generated for each of the top three
pPC axes, which represent c. 98% of spectral variation and appear
biologically meaningful (i.e. represent interpretable spectral varia-
tion and not just noise), using the function OUwie with mycor-
rhizal state stochastically mapped on each phylogeny using the
function make.simmap from the package PHYTOOLS (Revell, 2012;
Beaulieu & O’Meara, 2021). Seven evolutionary models were fit:
BM1, BMS, OU1, OUM, OUMV, OUMA, and OUMVA
(Table S9); the fit of these univariate models was assessed using
AIC (Akaike, 1974). To assess reliability of parameter estimates
for the univariate OUwie models, eigenvectors of the Hessian
matrix were evaluated for negative values. The standard errors of
the model parameters were also evaluated to assess the stability of
parameter estimates.

Significance tests

Multivariate analyses To test the hypothesis that AM and
EM species have significantly different spectra, we examined
the relationship between spectra as the response variable and
mycorrhizal type (MYC), growth form (GF), and leaf persis-
tence (LP) as predictors. Growth form and leaf persistence are
included as predictors in these models due to the influence
that these variables may have on leaf nutrients and spectra
within mycorrhizal type (Cornelissen et al., 2001). In addi-
tion, we tested models including the interaction between
MYC and GF or LP, respectively.

Using the R package MVMORPH (Clavel et al., 2015), regression
models were constructed for these combinations of predictors
with the four evolutionary models (BM, OU, EB, and lambda)
over the distribution of 100 randomly selected phylogenies. The
best fit model for each tree was determined using GIC (Konishi
& Kitagawa, 1996). Generalized Information Criterion is an
unreliable metric when using multiple predictors in MVMORPH so
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model parameters were also examined to determine model fit
(Clavel et al., 2015). To determine whether the multivariate
models violated statistical assumptions of linear regressions, the
distribution of residuals and the relationship between residuals
and fitted values were visualized.

Using the best fit models, multivariate analyses of variance
(MANOVAs) were conducted for these predictors to determine
whether spectral variation is significantly associated with mycor-
rhizal type, and whether growth form or leaf persistence influence
the relationship between spectra and mycorrhizal type.

Univariate analyses Regular (nonphylogenetic) principal com-
ponents analysis (PCA) was conducted for the spectral data
using the prcomp function from the STATS package in R (R
Core Team, 2019). The top six PC axes that explained 99%
of the spectral variation were analyzed using the manova and
summary.aov functions from the STATS R package (R Core
Team, 2019) to assess the statistical support for differences
between AM and EM species without accounting for phylo-
geny.

ANOVA tests were conducted using the function aov to test
for significant differences between mycorrhizal types in pPC axes
generated as described above (R Core Team, 2019). Because
pPCA only phylogenetically corrects the eigenvectors, and not
the scores, these ANOVA tests are not phylogenetically corrected
analyses (Revell, 2009; Polly et al., 2013). To account for phylo-
geny using these pPC axes, phylogenetic regressions against
mycorrhizal type were conducted for each of the top five pPC axis
and for each phylogenetic tree using the phylolm function in R
(Tung Ho & An�e, 2014), comparing four evolutionary models
(BM, lambda, EB, and OUrandomRoot); fit was assessed using
AIC and the best models were retained to assess significance of
the relationship between pPC axes and mycorrhizal type.

Analysis of leaf traits The empirically measured leaf traits
(LMA, EWT, and nitrogen, lignin, Chla and Chlb and carote-
noid content) were analyzed for statistical differences between
mycorrhizal type both with (gls) and without (lm) accounting for
phylogeny (Pinheiro et al., 2019; R Core Team, 2019).

Results

Classification of AM and EM species using PLS-DA

Partial least squares discriminant analysis was able to discriminate
between AM and EM species with high accuracy (90% AM–AM,
85% EM–EM, 19 component model; Figs 1, S6). More EM
samples were misidentified as AM (15%) than vice versa (10%).
The ability of PLS-DA to discriminate between AM and EM spe-
cies was maintained when only angiosperms are evaluated (92%
AM–AM, 81% EM–EM, 20 component model; Figs 1, S7).
When including only angiosperms, misidentifications of EM spe-
cies as AM increased to 19%, while the misidentifications of AM
as EM decreased (8%).

Distributions of spectral and predictor data

Arbuscular mycorrhizal species have higher average reflectance
than EM species although spectral variance is high for both AM
and EM species (Fig. 2). Mycorrhizal type, growth form, and leaf
persistence appear phylogenetically clustered (Fig. 3). Mycorrhi-
zal type is significantly correlated with both growth form
(v2 = 27.628, P = 1e-06) and leaf persistence (v2 = 5.8249,
P = 0.0158) according to chi-squared tests of independence.
Mycorrhizal type and growth form show high levels of phyloge-
netic signal (Table S10), while spectra tend to show lower levels
of phylogenetic signal, with a few exceptions (Table 1).

Models of spectral evolution

The intercept multivariate models identified EB as the best model
for 68 phylogenetic replicates, OU as the best model for 29 repli-
cates, and lambda as best for the remaining three phylogenetic
replicates. Brownian Motion was not identified as the best fitting
model for any replicate. Parameter estimates across the EB, OU,
and lambda models are consistent with deviation from BM. The
phylogenetic half-life for the OU models is 45.8� 4.87 million
years (Myr) across the phylogeny with a total tree length of
345� 30.3Myr (Table S11). For the EB models, the rate of
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Fig. 1 Partial least squares discriminant
analysis confusion matrix for arbuscular
mycorrhizal (AM) and ectomycorrhizal (EM)
type with percentage of samples accurately
classified (diagonal) and inaccurately
classified (off-diagonal) for (a) all species and
(b) angiosperm species only.
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deceleration (r) is �0.0153� 0.002 while the estimate of lambda
for the lambda models is 0.200� 3.06e-06 (Table S11; Fig. S8).

Evolutionary models were fit to the top three univariate
pPC axes that represent 66.6� 2.29%, 27.0� 1.75%, and
4.46� 0.428% of spectral variation, respectively, and appear to
have a biological interpretation in the context of spectral varia-
tion (Fig. 4b) and do not represent noise. For all three axes, BM
was rejected as the best fitting model (Table S12). For each phy-
logenetic replicate, one of the five variants of the OU model was
found to be the best fit for these three axes. Multiple optima cor-
responding to AM and EM species were identified for pPC 1 and
pPC 3, while a single optimum was identified for most phyloge-
netic replicates of pPC 2 (Table S12; Figs 4, 5, S9). Only a single
negative eigenvalue was recovered from the Hessian matrices of
the 100 phylogenetic replicates for the top three pPC axes indi-
cating that these models and parameters are reliable. By contrast,
multiple parameters were identified as unstable based on the size
of the standard error, mainly for the theta estimates for EM spe-
cies; however, these parameter values were consistently reported
when the analysis was repeated multiple times.

Statistical tests

Multivariate analyses Within the multivariate penalized likeli-
hood framework, using the best fitting evolutionary models to

generate the variance–covariance structure, the phylogenetic
MANOVAs recovered no significant difference between spec-
tra for AM and EM species (P = 1� 0) for any of the phylo-
genetic replicates (Table 2). No significant differences in
spectra between AM and EM species were observed for differ-
ent growth forms, leaf persistence types, or their interactions
within the multivariate PCM framework (Table 2). The dis-
tributions of residuals were approximately normal and homo-
skedastic; transforming the data (square root of 1009 spectral
reflectance) did not improve the distribution of residuals sig-
nificantly (Figs S10, S11).

Univariate analyses ANOVAs of regular PC axes showed
significant differences between AM and EM species
(Table 3). Significant differences between mycorrhizal types
were observed when analyzing the top six PC axes together
(P = 6.04e-05); when examining the regular PC axes inde-
pendently, significant differences were observed for PC 1
(P = 0.003, 61.6% variance explained), PC 3 (P = 0.011,
12.4%), and PC 5 (P = 0.049, 0.9%). When the Holm cor-
rection for multiple tests was applied, only PC axis 1 was
found to be significant (P = 0.018), while PC axis 3 almost
reached our significance threshold (P = 0.056). Significant
differences between AM and EM species were also observed
for nonphylogenetic ANOVAs of phylogenetic PC axes for
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Fig. 2 Mean spectral reflectance with 95%
quantile for arbuscular mycorrhizal (AM;
orange) and ectomycorrhizal (EM; blue)
plant species for (a) all taxa, (b) angiosperms
only, and (c) conifer and fern species only
(only one fern species: AM).
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four pPC axes: pPC 1 (66.6� 2.3% variance explained),
pPC 3 (4.46� 0.43%), pPC 4 (0.697� 0.046%), and pPC
5 (0.417� 0.038%; Fig. 6a).

However, phylogenetic linear regression (phylolm) of pPC axes
identified few significant differences between AM and EM species
for individual pPC axes (Fig. 6b). The only pPC axis with a high
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number of significant phylogenetic replicates was pPC axis 5;
however, this axis appears to have no obvious biological interpre-
tation and represents only 0.417� 0.0377% of spectral variation
(Fig. S12).

Leaf traits Several empirically measured leaf traits were also sig-
nificantly different for AM and EM species when not accounting
for phylogeny; however, no significant differences between AM
and EM species were found for any of the leaf traits when
accounting for phylogeny (gls; Table 4).

Discussion

Mycorrhizal type can be accurately predicted from leaf spec-
tra, supporting the application of machine learning methods
to predict belowground traits using remotely sensed spectra,
although what is actually being detected is the relationship
between mycorrhizal type and phylogeny rather than intrin-
sic traits related to mycorrhizal type. However, using multi-
variate PCM, we find that when accounting for phylogeny,
no significant relationship is observed between mycorrhizal
type and leaf spectra. Species with AM and EM mycorrhizas
are evolving toward different spectral optima on certain axes
of variation, emphasizing the influence of evolutionary his-
tory on the relationship between mycorrhizal type and leaf
spectra.

Leaf spectra predict mycorrhizal type

Mycorrhizal type was predicted with high accuracy using PLS-
DA, which indicates that machine learning is a reliable approach
for monitoring plant traits using spectra, including those only
indirectly associated with spectra (Fisher et al., 2016; Sousa
et al., 2021). Even when analyzing only angiosperms, and there-
fore removing any impact of the conifer–angiosperm split, PLS-
DA accurately classified species’ mycorrhizal type based on spec-
tra, suggesting that this approach may be successful when applied
to different contexts, and not only when species have dramatically
different leaf morphology. Partial least squares discriminant ana-
lysis is an effective way of discriminating between categories even
at finer scales, such as between species (Girard et al., 2020;
Kothari & Schweiger, 2022). Therefore, it is not surprising that
spectra could discriminate larger aggregations of species such as
groupings by mycorrhizal type, especially given that each species
in these analyses belongs to a single type. There are key differ-
ences in the methods used and the questions answered by PLS-
DA compared with PCM. Machine learning methods such as
PLS-DA do not account for correlation among species and use
individual-level data rather than species means, increasing the
number of data points available. Partial least squares discriminant
analysis can predict categories based on small differences but does
not assess the significance of the relationship between mycorrhizal
type and spectra. The predictive power of PLS-DA is useful for

Table 1 Phylogenetic signal of spectra as measured by Kmulti.

Taxonomic
level Clade

No. of
taxa

Spectral range
(nm)

Kmulti

(mean� SD)
P-value
(mean� SD)

No. of
significant
replicates
(/100)

Class Equisetopsida 92 400–699 (VIS) 0.094� 0.028 0.016*� 0.074 96
Equisetopsida 92 700–1399 (NIR) 0.103� 0.026 0.007**� 0.039 98
Equisetopsida 92 1400–2400 (SWIR) 0.161� 0.033 0.001**� 2.4e-04 100
Equisetopsida 92 400–2400 0.123� 0.028 0.002**� 0.005 100

Subclass Pinidae 11 400–2400 0.836� 0.301 0.007**� 0.008 99
Pinidae 11 400–699 (VIS) 0.221� 0.130 0.416� 0.155 0
Pinidae 11 700–1399 (NIR) 0.843� 0.324 0.0360*� 0.027 82
Pinidae 11 1400–2400 (SWIR) 1.045� 0.222 0.002**� 0.002 100
Magnoliidae 80 400–2400 0.135� 0.028 0.005**� 0.034 99
Magnoliidae 80 400–699 (VIS) 0.185� 0.049 0.005*� 0.034 99
Magnoliidae 80 700–1399 (NIR) 0.123� 0.029 0.016*� 0.074 94
Magnoliidae 80 1400–2400 (SWIR) 0.150� 0.028 0.001**� 0.004 100

Superorder Rosanae 51 400–2400 0.131� 0.025 0.004**� 0.006 100
Asteranae 14 400–2400 0.114� 0.046 0.432� 0.177 0
Lilianae 14 400–2400 0.612� 0.109 0.001**� 6.9e-04 100

Order Pinales 10 400–2400 0.556� 0.207 0.047*� 0.034 61
Sapindales 10 400–2400 0.121� 0.041 0.152� 0.064 0
Fagales 16 400–2400 0.183� 0.063 0.021*� 0.055 91
Poales 12 400–2400 0.669� 0.130 0.006**� 0.004 100
Rosales 16 400–2400 0.166� 0.042 0.658� 0.127 0
Asterales 4 400–2400 0.210� 0.124 0.735� 0.180 0
Fabales 4 400–2400 0.744� 0.153 0.448� 0.053 0
Lamiales 3 400–2400 0.707� 0.242 0.226� 0.056 0

Bold – significant and high phylogenetic signal (Kmulti > 0.5 and P-value < 0.05). Spectral regions: VIS, visible; NIR, near infrared; SWIR, shortwave infrared.
Significance levels: *, P < 0.05; **, P < 0.01.
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many applications including remote sensing and biodiversity
monitoring but does not provide insight into the evolutionary
relationship between spectra and mycorrhizas. Therefore, it is
important to be clear about what is being detected (i.e. groupings
rather than relationships) when applying this method in different
contexts and to ensure that when interpreting these classifica-
tions, accurately classifying groups is not conflated with identify-
ing biologically meaningful traits. These methods may also be
less accurate in cases where the mycorrhizal type-phylogeny rela-
tionship differs from what we observed in this study.

Evolutionary models of spectra

The relationship between traits and phylogenies can be quantified
by phylogenetic signal. Mycorrhizal type is strongly associated
with phylogeny and shows high phylogenetic signal (Table S10).

The EM strategy has four evolutionary origins within our dataset:
in conifers, Fagales, Salicaceae, and Tilia. This contributes to the
close relationship between mycorrhizal type and phylogeny.
Spectra are not as closely linked to phylogeny, except for within
certain clades such as conifers and monocots, and the estimate of
phylogenetic signal for multivariate spectra (Table 1) reflects a
deviation from the pattern of BM. As an integrated phenotype
comprising many foliar traits that are presumably under selec-
tion, it was expected that leaf spectra would deviate from pure
BM. This is consistent with Meireles et al. (2020) who showed
that certain wavelengths had low phylogenetic signal (K < 1) and
evolved under an OU model rather than a BM model. The high
dimensionality of spectra may also contribute to this lower esti-
mate; as the Kmulti statistic is calculated over the entire range of
wavelengths, wavelengths with high phylogenetic signal may be
obscured by those with low phylogenetic signal. However,
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and alpha OU. (b) pPC loadings for the corresponding top three pPC axes.

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

New Phytologist (2023) 238: 2651–2667
www.newphytologist.com

New
Phytologist Research 2659

 14698137, 2023, 6, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18902 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [29/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Sorbus americana
Sorbus decora
Crataegus monogyna
Prunus nigra
Prunus pensylvanica
Prunus serotina
Holodiscus discolor
Spiraea alba
Oemleria cerasiformis
Rosa nutkana
Rubus idaeus
Ulmus americana
Ulmus rubra
Celtis occidentalis
Frangula alnus
Rhamnus cathartica
Vicia cracca
Vicia sativa
Lathyrus sphaericus
Cytisus scoparius
Betula papyrifera
Betula populifolia
Betula alleghaniensis
Alnus incana
Carpinus caroliniana
Ostrya virginiana
Carya cordiformis
Carya ovata
Juglans cinerea
Juglans nigra
Quercus alba
Quercus macrocarpa
Quercus bicolor
Quercus garryana
Quercus rubra
Fagus grandifolia
Populus balsamifera
Populus grandidentata
Populus tremuloides
Acer rubrum
Acer saccharinum
Acer saccharum
Acer nigrum
Acer negundo
Acer spicatum
Acer pensylvanicum
Acer platanoides
Aesculus hippocastanum
Rhus typhina
Lythrum salicaria
Tilia americana
Euthamia graminifolia
Sericocarpus rigidus
Solidago gigantea
Cirsium arvense
Lomatium utriculatum
Sanicula crassicaulis
Plectritis congesta
Symphoricarpos albus
Fraxinus americana
Fraxinus pennsylvanica
Fraxinus nigra
Apocynum androsaemifoliu
Asclepias syriaca
Cornus sericea
Berberis aquifolium
Dactylis glomerata
Festuca idahoensis
Poa pratensis
Calamagrostis canadensis
Phalaris arundinacea
Bromus inermis
Bromus sterilis
Bromus sitchensis
Phragmites australis
Eriophorum vaginatum
Typha angustifolia
Typha latifolia
Camassia leichtlinii
Camassia quamash
Pinus banksiana
Pinus rigida
Pinus resinosa
Pinus strobus
Picea mariana
Picea abies
Picea glauca
Abies balsamea
Tsuga canadensis
Larix laricina
Thuja occidentalis
Polystichum munitum

Optima

AM
EM
Shared

Scores

AM
EM

−4 0 2 4

PC 1 scores

−2 0 1 2

PC 2 scores

−1.0 0.0

PC 3 scores
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Phylogenetic principal components (PC) scores for 100 phylogenetic replicates for pPC axes 1–3 are colored by mycorrhizal type (AM, orange; EM, blue)
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Table 2 Phylogenetic MANOVA results for mycorrhizal type, growth form, leaf persistence, and interactions between mycorrhizal type and growth form or
leaf persistence respectively.

Predictor(s) P-value (mean� SD) Test stat (mean� SD) Phylogenies significant (%)

Mycorrhizal type (AM vs EM) 1� 0 0.238� 0.011 0
Growth form (tree, shrub, herb) 0.926� 0.15 0.017� 0.021 0
Leaf persistence (evergreen, deciduous) 0.944� 0.044 0.129� 0.077 0
Mycorrhizal type9 growth form MYC: 1.0� 1e-05 0.568� 0.077 0

GF: 0.987� 0.090 0.097� 0.030 0
MYC : GF: 0.999� 0.002 0.426� 0.046 0

Mycorrhizal type9 leaf persistence MYC: 1.0� 0.002 0.469� 0.092 0
GF: 0.990� 0.043 0.277� 0.068 0
MYC : GF: 0.999� 0.005 0.340� 0.098 0

AM, arbuscular mycorrhizal; EM, ectomycorrhizal; GF, growth forn; MYC, mycorrhizal type.

Table 3 ANOVA results for the top six regular principal component (PC) axes representing 99% of spectral variation.

Predictor
PC
axis

Variance
explained (%) P-value F-value

Adjusted P-value
(Holm correction)

Mycorrhizal
type

1 61.6 0.0030** 9.289 0.0182*
2 22.2 0.3426 0.9101 0.3426
3 12.4 0.0112* 6.703 0.0561
4 1.7 0.0938 2.868 0.1968
5 0.9 0.0492* 3.976 0.1968
6 0.3 0.0635 3.530 0.1968
1 : 6 99.3 (cumulative) 6.037e-5** 5.614 NA

Significance levels: *, P value < 0.05; **, P value < 0.01.
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Fig. 6 P-values of significance tests for the top five phylogenetic principal components (PC) axes representing 99% of spectral variation and mycorrhizal
type. Each point represents a phylogenetic replicate. Red line, significance threshold of 0.05. Values below the significance threshold are colored red.
(a) Nonphylogenetic ANOVA. (b) Phylogenetic linear regression.
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estimates of phylogenetic signal for the three main spectral
regions (VIS, NIR, and SWIR) tend to be congruent with esti-
mates calculated over the entire spectrum (Table 1). Consistent
with lower phylogenetic signal in spectra, OU or EB evolutionary
models were identified as the best fitting models for many phylo-
genetic replicates of the multivariate intercept spectral models,
providing additional evidence for deviation from BM.

According to the univariate analysis of pPC axes, species with
AM are evolving toward a different spectral optimum than spe-
cies with EM, as illustrated by pPCs 1 and 3. While these results
indicate an association between mycorrhizal type and spectral
optima, the close link between mycorrhizal type and phylogeny
may be driving this relationship. In our dataset, conifer species
are almost exclusively EM while most angiosperm species are
AM. We would therefore expect spectral differences across this
deep phylogenetic split to be significantly correlated with mycor-
rhizal type, regardless of whether most spectral variation is due to
mycorrhizal type or to other traits (i.e. needles vs broad leaves).
While mycorrhizal type may be expected to contribute to some
spectral differences between conifers and angiosperms, it is likely
that other factors are playing a more dominant role in determin-
ing this spectral variation. This association between mycorrhizal
type and phylogeny also occurs within the angiosperm clade,
where EM species are found in few lineages, and our univariate
model results are replicated when analyzing only angiosperm spe-
cies (Methods S2; Table S13; Figs S13–S15). Therefore, we sug-
gest that the association of mycorrhizal type with different
spectral optima is the result of the close association of mycorrhi-
zal type with phylogeny.

The pPC axis 1, representing 66.6� 2.3% of spectral varia-
tion, appears to comprise spectral variation across the near infra-
red (NIR) and shortwave infrared (SWIR) regions, wavelengths
that are typically associated with water content, structural ele-
ments including mesophyll structure and LMA, and biochemical
compounds (Jacquemoud & Baret, 1990; Ustin et al., 2009).
pPC axis 3 (4.46� 0.43% of variation) appears to comprise
mainly variation within the visible (VIS) wavelengths associated
with both photosynthetic and accessory pigments (Curran, 1989;
Jacquemoud & Baret, 1990; Ustin et al., 2009). These traits
underlying spectral variation for pPC axes 1 and 3 are under dif-
ferent selective pressures that may be associated with ecological

strategies beyond mycorrhizal type. By contrast, pPC 2 represents
traits that are under selection toward a single optimum regardless
of mycorrhizal type. The traits underlying this spectral variation,
representing 27.0� 1.8% of variation across the entire range of
wavelengths, are likely conserved across the vascular plants, and
these wavelengths may be strongly influenced by water content.

Lack of spectral differences between AM and EM species

Mycorrhizal associations have been linked to traits comprising
the leaf economic spectrum, including leaf nutrients (Shi et al.,
2020), although the generality of this relationship has been called
into question (Koele et al., 2012). Leaf traits have in turn have
been linked to leaf spectra (Serbin et al., 2014; Ely et al., 2019;
Girard et al., 2020; Kothari et al., 2022). Therefore, we expected
to observe differences in spectra between AM and EM species
due to the indirect association between root traits and leaf spectra
via leaf traits. Consistent with the findings of Cornelissen et al.
(2001) and Hayes et al. (2014), we observed significant differ-
ences in leaf nutrients and spectra between AM and EM species
when not statistically accounting for phylogeny. However, when
we accounted for phylogeny, the relationship between spectra
and mycorrhizal type was insignificant. This is consistent with
the lack of statistical support we found for differences in leaf traits
between AM and EM species when accounting for phylogeny,
and with the findings of Koele et al. (2012), where independent
contrasts failed to find support for a universal relationship
between leaf nutrients and EM/non-EM species. Because of few
independent origins of mycorrhizal types, we have a reduction in
statistical power for finding support for the relationship between
mycorrhizal type and spectra. Significant differences in leaf nutri-
ents between AM and EM species were found in a study of thou-
sands of woody plant species across a global distribution while
accounting for phylogeny, including more independent origins
of the EM mycorrhizal type within angiosperms which poten-
tially increased their statistical power (Averill et al., 2019). There-
fore, our study does not provide evidence that there is no
relationship between spectra and mycorrhizal type; rather, we
lack evidence that these traits show correlated evolution.

The two modeling approaches used here (multivariate PCM
and univariate models) complement each other and provide

Table 4 Nonphylogenetic (lm) and phylogenetic regression (gls) results for leaf traits.

Trait (unit)
No. of
taxa

Nonphylogenetic P-value
(lm)

Nonphylogenetic P-value
(lm with Holm correction)

Phylogenetic P-value
(gls)

Phylogenetic P-value
(gls with Holm correction)

LMA (gm�2) 92 9.68e-07*** 6.78e-06*** 0.415 1
EWT (lm) 92 0.0503^ 0.201 0.481 1
Nitrogen (% per unit
mass)

91 0.00445** 0.0267* 0.277 1

Lignin (% per unit mass) 91 0.0191* 0.0956 0.783 1
Chla (% per unit area) 91 0.208 0.624 0.676 1
Chlb (% per unit area) 91 0.242 0.624 0.725 1
Carotenoid (% per unit
area)

91 0.502 0.624 0.455 1

EWT, equivalent water thickness; LMA, leaf mass per area. Significance levels: ^, P < 0.06; *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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different insights into the relationship between mycorrhizas and
spectra. The univariate models examine the evolutionary patterns
of spectra across the phylogeny with mycorrhizal type associated
with possible alternative selective regimes. This approach does
not remove the phylogenetic correlation but rather attempts to
explain the variation in spectra across the phylogeny using mycor-
rhizal type. By contrast, PCM remove the variation attributed to
phylogeny and attempt to explain the remaining spectral varia-
tion using mycorrhizal type. As a result, the PCM addresses spec-
tral variation beyond phylogenetically correlated variation, while
the univariate models address the phylogenetically correlated var-
iation itself. The debate about attributing all variation correlated
with phylogeny solely to phylogeny rather than to other asso-
ciated forces is beyond the scope of this paper, but it is important
to note that the variation that is associated with phylogeny is real
variation. As illustrated in Fig. 2(a), there are visible differences
between the mean spectra for AM and EM species (albeit with
high variance), where AM species tend to have higher reflectance
than EM species, in contrast with Sousa et al. (2021), who
observed higher reflectance values in EM compared with AM tree
species. However, it is important to account for evolutionary his-
tory when testing whether this variation is statistically associated
with our predictor variables because of the impact of nonindepen-
dence on the likelihood of observing a significant relationship.

Other considerations and future directions

While the multivariate PCM implemented here have been used
in other studies of datasets with higher numbers of traits than
taxa, this study examines the most highly dimensional data to
date. Spectra represent an aggregate of traits, with many different
factors affecting this phenotype. With these highly dimensional
data, it may be challenging to identify a single predictor that is
significantly correlated with spectral variation from among the
many interacting influences on spectra, even if the predictor has a
direct influence on spectra. The complexity of mycorrhizal asso-
ciations may influence this relationship. The EM type comprises
multiple different kinds of ectomycorrhizal associations based on
the fungal partner, which can impact the influence that the EM
has on the host plant (Tedersoo, 2017). The impact of mycorrhi-
zal association on the host can also depend on the mycorrhizal
status (i.e. obligately or facultatively mycorrhizal; Brun-
drett, 2002; Hempel et al., 2013) and environmental conditions
(N€asholm et al., 2013; Averill et al., 2019). Therefore, the rela-
tionship between mycorrhizas and leaf spectra is much more
complex than a binary AM vs EM designation and deserves con-
tinued in-depth analysis, including explicitly accounting for
environmental impacts on the influence of mycorrhizal interac-
tions on plant traits. While our dataset includes environmental
variation, including intraspecific variation across nutrient gradi-
ents, our analyses did not directly examine how this variation
could affect the covariance between mycorrhizal type and the
traits underlying spectra.

Additionally, while PCM attempt to solve the problem of evo-
lutionary correlation, the problem of singular evolutionary events
remains (Uyeda et al., 2018). Due to the coincidence of

morphologically distinctive leaves and mycorrhizal type in coni-
fers and angiosperms, these traits may appear to be correlated
within this evolutionary context regardless of causative factors.
Applying solutions to rare events like these, such as graphical
model methods, may be a next step to examining the relationship
between mycorrhizal type and leaf spectra (Uyeda et al., 2018).
Taxon sampling can also influence the ability of PCM analyses to
find statistical support. Our study focused on temperate vascular
plants of Canada, excluding a wide variety of tropical plants. In
their study of global mycorrhizal associations, Averill
et al. (2019) examined the relationship between leaf traits and
mycorrhizal type with wider taxon sampling across woody vascu-
lar plants including tropical lineages and more independent ori-
gins of the EM type but excluding herbaceous plants. A truly
global analysis may identify relationships between mycorrhizal
type and leaf traits or spectra that have remained undetected.

Our findings highlight the importance of accounting for evo-
lutionary history when investigating ecological questions such as
the impact of mycorrhiza on spectral variation. However, while
the ability of models to predict mycorrhizal type from leaf spectra
may not be due to a direct influence of mycorrhizal type on leaf
spectra, we show that belowground traits can be identified using
leaf spectra, supporting the use of remotely sensed spectra to
address pressing questions about the ecology and conservation of
biodiversity.
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