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Abstract

Imaging spectroscopy is emerging as a leading remote sensing method for

quantifying plant biodiversity. The spectral variation hypothesis predicts that

variation in plant hyperspectral reflectance is related to variation in taxonomic

and functional identity. While most studies report some correlation between

spectral and field-based (i.e., taxonomic and functional) expressions of biodi-

versity, the observed strength of association is highly variable, and the utility

in applying spectral community properties to examine environmental drivers

of communities remains unknown. We linked hyperspectral data acquired by

airborne imaging spectrometers with precisely geolocated field plots to exam-

ine the spectral variation hypothesis along a temperate-to-boreal forest gradi-

ent in southern Québec, Canada. First, we examine the degree of association

between spectral and field-based dimensions of canopy tree composition and

diversity. Second, we ask whether the relationships between field-based com-

munity properties and the environment are reproduced when using spectral

community properties. We found support for the spectral variation hypothesis

with the strength of association generally greater for the functional than taxo-

nomic dimension, but the strength of relationships was highly variable and

dependent on the choice of method or metric used to quantify spectral and

field-based community properties. Using a multivariate approach (compari-

sons of separate ordinations), spectral composition was moderately well corre-

lated with field-based composition; however, the degree of association

increased when univariately relating the main axes of compositional variation.

Spectral diversity was most tightly associated with functional diversity metrics

that quantify functional richness and divergence. For predicting canopy tree

composition and diversity using environmental variables, the same qualitative

conclusions emerge when hyperspectral or field-based data are used. Spatial

patterns of canopy tree community properties were strongly related to the
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turnover from temperate-to-boreal communities, with most variation

explained by elevation. Spectral composition and diversity provide a straight-

forward way to quantify plant biodiversity across large spatial extents without

the need for a priori field observations. While commonly framed as a potential

tool for biodiversity monitoring, we show that spectral community properties

can be applied more widely to assess the environmental drivers of biodiversity,

thereby helping to advance our understanding of the drivers of biogeographi-

cal patterns of plant communities.

KEYWORD S
biodiversity, boreal forest, hyperspectral reflectance, imaging spectroscopy, northern
temperate forest, spectral composition, spectral diversity, spectral variation hypothesis

INTRODUCTION

Plants absorb and scatter light in unique and complex
ways depending on their chemical and physical properties;
thus, plant–light interactions provide a window through
which to study plant form and function (Cavender-Bares
et al., 2017; Kothari & Schweiger, 2022; Ustin & Gamon,
2010). Plants interact with sunlight across the wavelengths
of incident radiation, but this interaction is only noticeable
to the human eye in the visible region (400–700 nm),
where leaf pigments absorb light (Jacquemoud & Baret,
1990; Ustin et al., 2009). At longer near-infrared (NIR)
wavelengths (700–1100 nm), reflectance is high and the
structural characteristics of leaves (e.g., intercellular
spaces, cell wall thickness) and crown architecture
(e.g., branching structure, leaf angle distribution) influence
light scattering (Jacquemoud & Baret, 1990; Ollinger,
2011; Ustin et al., 2009). Other leaf biochemicals, including
lignin, cellulose, and phenolics, have absorption features
in the shortwave infrared (SWIR) region (1100–2400 nm).
Imaging spectroscopy, a passive optical remote sensing
approach also referred to as hyperspectral imaging, quan-
tifies how Earth’s surface materials—including
vegetation—reflect light across hundreds of contiguous,
narrow wavelength bands. Given that traits drive
plant–light interactions, hyperspectral reflectance profiles
acquired over plant canopies are increasingly considered
an integrative measure of plant phenotypes
(Cavender-Bares et al., 2017; Kothari & Schweiger, 2022;
Ustin & Gamon, 2010).

There is great interest in applying imaging spectros-
copy to better understand patterns in plant biodiversity
and to monitor global change impacts, as remotely
sensed data overcomes the inherent sparseness of
field-based biodiversity inventories and provide spatially
continuous data across the extent of the imaged area
(Turner, 2014; Wang & Gamon, 2019). The spatial

resolution of imagery dictates the ecological level to
which hyperspectral reflectance should relate, where at
fine spatial resolutions hyperspectral data should provide
information on individual plants. Centered on the pre-
mise that hyperspectral reflectance profiles are integrated
measures of plant phenotypes, the spectral variation
hypothesis (SVH) predicts that variation in hyperspectral
reflectance within a given area (i.e., spectral diversity)
should be a direct expression of plant biodiversity in the
same area (originally formulated by Palmer et al. [2002]
but updated by Ustin & Gamon [2010]). While the SVH
explicitly predicts a direct link between spectral and
field-based diversity, building off its central premise, the
SVH can be extended to other properties that character-
ize the plant community within a given area. However,
to date, uncertainty has surrounded the generality of the
link between spectral and field-based community proper-
ties (Fassnacht et al., 2022).

Biodiversity is a multidimensional concept—
encompassing variation in species’ identities, functions,
and other elements of variation of life on Earth (Purvis &
Hector, 2000). While plant communities are most com-
monly examined at the taxonomic level (i.e., counting spe-
cies and estimating their abundances), incorporating
functional attributes (i.e., trait values) of organisms has
greatly advanced the understanding of distributions along
environmental gradients (e.g., Grime, 1979; Westoby et al.,
2002), community assembly (e.g., McGill et al., 2006;
Shipley, 2010), and the effects of organisms on ecosystem
properties (e.g., Funk et al., 2017; Lavorel & Garnier,
2002). Given that plant traits dictate plant–light interac-
tions, the association between spectral and taxonomic
community properties is indirect, via traits (Fassnacht
et al., 2022). We thus predict that support for the SVH
should be stronger when predicting the functional dimen-
sion, particularly when the measured traits are causally
associated with hyperspectral reflectance profiles.
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For all biodiversity dimensions, a multitude of
measurement methods and metrics have been proposed
(Magurran & McGill, 2010; Purvis & Hector, 2000;
Wang & Gamon, 2019). We are generally interested in
two main community properties: composition and diver-
sity (Magurran & McGill, 2010). Composition—which
species or what trait values are present within a given
area—is multivariate (i.e., vectors of species abundances
or community-weighted mean trait values) and ordina-
tion methods are often used to reduce the dimensionality
of composition data (Legendre & Legendre, 2012). In con-
trast, diversity—the variability of species abundances or
trait values within a given area—is univariate and is
quantified by metrics (i.e., mathematical functions) that
synthesize and summarize variation in compositional
data (Daly et al., 2018; Magurran & McGill, 2010;
Purvis & Hector, 2000). There is no single correct way to
quantify diversity, as is evident from the vast number of
metrics found in the literature, where the various metrics
emphasize different components of diversity: richness,
evenness, and divergence (Magurran & McGill, 2010;
Purvis & Hector, 2000).

The concept of composition and diversity can be
extended to the spectral dimension (i.e., quantified using
hyperspectral data). In an analogous manner, spectral
composition is multivariate and defined by the full set of
reflectance values that are present within a given area
(also referred to as spectral identity; Kothari &
Schweiger, 2022). Just as functional composition is quan-
tified using community-level trait averages, spectral com-
position can be quantified using community-level
average reflectance (Schweiger & Laliberté, 2022; Wallis
et al., 2023; alternatively quantified using spectral species
abundances; see Féret & Asner, 2014). Spectral diversity,
correspondingly, is related to variability and quantified
by metrics that summarize the variation in reflectance
values within a given area (as reviewed by Wang &
Gamon, 2019). Several spectral diversity metrics have
been proposed to date (e.g., Dahlin, 2016; Laliberté et al.,
2020; Wang et al., 2016; as reviewed by Wang & Gamon,
2019); however, less attention has been devoted to spec-
tral composition (but see Laliberté et al., 2020; Rocchini
et al., 2018; Schweiger & Laliberté, 2022). Support for the
SVH is likely dependent on the choice of spectral com-
munity property and the field-based community property
to which it is compared, but few studies have tested the
many combination methods and metrics used to charac-
terize communities.

The SVH has been tested using fine-resolution
hyperspectral data in a variety of ecosystems, including
temperate grasslands (Gholizadeh et al., 2019; Wang,
Gamon, Cavender-Bares, et al., 2018), tropical forests
(Draper et al., 2019; Féret & Asner, 2014), and temperate

forests (Kamoske et al., 2022) (see Rocchini et al., 2010;
Schmidtlein & Fassnacht, 2017; Wang & Gamon, 2019
for reviews). To date, most studies have related spectral
diversity to taxonomic diversity, particularly species rich-
ness, while less attention has been paid to functional
diversity (but see Kamoske et al., 2022; Schweiger et al.,
2018). Moreover, the SVH has rarely been extended to
examine the degree of association between spectral and
field-based composition (but see Draper et al., 2019;
Féret & Asner, 2014; Hakkenberg, Peet, et al., 2018;
Schweiger & Laliberté, 2022; Wallis et al., 2023). The
strength of support for the SVH has varied greatly across
studies (Fassnacht et al., 2022). Results are dependent on
spatial scale, with stronger relationships between spectral
and field-based diversity observed when the spatial reso-
lution of imagery (i.e., pixel size) matches the size of indi-
vidual plants (Rossi et al., 2021; Schweiger & Laliberté,
2022; Wang, Gamon, Cavender-Bares, et al., 2018). One
recent study across North American biomes found that
when the spatial resolution of hyperspectral data was at
the m-scale, there was strongest support for SVH in
closed-canopy forested ecosystems (Schweiger &
Laliberté, 2022). Additionally, relationships can be
influenced by factors such as canopy gaps and soils
(Gholizadeh et al., 2019; Wang, Gamon, Schweiger, et al.,
2018), standing dead biomass (Rossi et al., 2021), and illu-
mination conditions (Hakkenberg, Zhu, et al., 2018)—
features that can increase spectral heterogeneity indepen-
dently of plant traits. This may explain why spectral
diversity metrics that more heavily weight extreme spec-
tral values show weaker relationships with field-based
diversity (Rossi et al., 2021). Currently, there is no con-
sensus on the most appropriate spectral diversity metric
(Wang & Gamon, 2019). Despite criticisms regarding the
SVH (e.g., Fassnacht et al., 2022; Schmidtlein &
Fassnacht, 2017), spectral community properties may
prove to be an effective approach to quantifying plant
communities in certain ecosystems and under certain
conditions.

While imaging spectroscopy is commonly presented
as an approach for quantifying temporal changes in com-
munities (e.g., Wang & Gamon, 2019), maps of spectral
community properties across broad spatial extents also
present a potentially powerful resource for examining
ecological processes across space (Cavender-Bares et al.,
2017; Kothari & Schweiger, 2022). Field-based studies
typically have relatively small sample sizes, which can
result in the failure to detect real effects or in the detec-
tion of spurious effects (Anderson et al., 2001).
Hyperspectral data can greatly increase sample sizes, in
addition to incorporating more variation in plant form
and function than is typically quantified in field-based
studies (Kothari & Schweiger, 2022). Despite calls for a
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wider application of hyperspectral data (Cavender-Bares
et al., 2017; Kothari & Schweiger, 2022), few studies
have explicitly investigated the ability to examine
ecological processes (e.g., environmental effects on
communities) using spectral community properties,
beyond biodiversity–ecosystem functioning relationships
(Schweiger et al., 2018; Wallis et al., 2023; Williams et al.,
2021). Spectral community properties might advance our
understanding of community assembly, but only if spatial
patterns in field-based composition and diversity are
reproduced when communities are characterized by
hyperspectral data.

Here, we use hyperspectral data from an airborne sur-
vey in combination with precisely geolocated field data
on canopy trees to examine the SVH along a
temperate-to-boreal elevation gradient in southern
Québec. First, we assessed the degree of association
between spectral and field-based properties, defined by
both taxonomic and functional dimensions, of canopy
tree communities. We tested the strength of relationships
using a variety of methods and metrics characterizing
composition and diversity. Then we examined whether
spatial patterns in spectral community properties could
be used to quantify environmental drivers of canopy tree
community properties. If there is strong support for
the SVH, we expect relationships between field-based
community properties and the environment to be
reproduced when using spectral community properties.
Finally, we compared the predictive ability of hyperspectral
data acquired by two imaging spectrometers with differ-
ing spectral properties, notably the wavelength region
sampled.

METHODS

Study sites

This study was conducted at two protected areas in the
northern temperate zone of Québec, Canada: Parc
national du Mont-Mégantic (hereafter, Mont Mégantic)
and Parc national du Mont-Saint-Bruno (hereafter, Mont
St-Bruno; Figure 1). Elevation across Mont Mégantic
ranges from 430 to 1105 m above sea level (m asl),
corresponding to a mean annual temperature of ~4�C at
low elevations and ~1�C at high elevations (2013–2021,
Station IDs IQUBECNO2 and ILAPATRI2, Weather
Underground). Along the elevation gradient, the decidu-
ous temperate forest transitions to coniferous, boreal for-
est. At low elevations, the canopy is primarily composed
of Acer saccharum Marshall (sugar maple), Betula
alleghaniensis Britt. (yellow birch), and Fagus grandifolia
Ehrh. (American beech). While less common, mixed

forest stands also occur at low elevations, commonly
along streams, where the predominant conifers are Abies
balsamea (L.) Mill. (balsam fir) and Picea rubens Sarg.
(red spruce). At mid-elevations, the canopy is predomi-
nantly yellow birch, red spruce, balsam fir, and Betula
papyrifera Marshall (paper birch). At high elevations, the
canopy is predominantly balsam fir, paper birch, and
Sorbus spp. Mont St-Bruno is less topographically diverse,
with elevation ranging from 30 to 208 m asl, and
warmer than Mont Mégantic, with a mean annual tem-
perature of ~7�C (2010–2020, Weather Station ID
48374, Environment Canada). Canopy composition is
like low elevations at Mont Mégantic, where sugar
maple is abundant and grows alongside American
beech and more-southerly species, such as Quercus
rubra L. (red oak), Ostrya virginiana (Mill.) K. Koch
(American hop-hornbeam), and Tilia americana
L. (American basswood) occurring at the northernmost
limit of their ranges.

Data

During the summers of 2019 and 2020, we established
forest inventory plots to span a wide range of conditions
present across Mont Mégantic (n = 50) and Mont
St-Bruno (n = 15). Specifically, forest inventory plots
were established to (1) maximize the range of unique tree
species assemblages sampled and (2) cover the range of
environmental conditions (e.g., elevation, slope, and
aspect). Plots were ~706 m2 circles (15 m radii) as viewed
from above, and dimensions were corrected to account
for slope in the field. To relate field data with remotely
sensed data, we estimated high-accuracy positions of plot
centers (mean horizontal accuracy = 0.2 m; Trimble
Catalyst DA1 antenna with Trimble RTX correction ser-
vice, Trimble Inc.).

Taxonomic dimension

Within each forest inventory plot, we quantified the tree
community—all individuals with crowns extending into
the upper canopy, as well as individuals with lower
crowns having a dbh ≥9 cm. All individuals were identi-
fied to species and positioned in relation to plot center,
dbh and height were quantified and assigned a canopy
class (i.e., a categorical variable that describes the vertical
position and dominance of crowns; classes defined by
NRCan, 2008), and a suite of crown measurements
required to model crown area and position crowns in
relation to their trunks were quantified (detailed
in Crofts et al., 2022).
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Given that only the uppermost layer of vegetation is
captured by imaging spectrometers, for the analyses we
considered the subset of trees forming the uppermost
layer of the canopy. To do so, we modeled tree crowns as
ellipses, positioned crowns in relation to their associated

tree trunks, and determined their vertical order based on
canopy class and height (Figure 1c). When crowns
overlapped, we retained the entire area of the
overlapping region for the uppermost individual, but we
clipped the overlapping region from the crowns of all

F I GURE 1 Maps of forest inventory plots surveyed at the two study sites: (a) Parc national du Mont-Saint-Bruno (n = 15) and (b) Parc

national du Mont-Mégantic (n = 50); locations within southern Québec, Canada, are depicted in the inset map. The parks’ extent is
represented by the green shading, and forest inventory plots are symbolized by the black dots. The red dot symbolizes the plot for which

(c) taxonomic composition and (d) spectral composition are exemplified. (c) The plot’s taxonomic composition, where bird’s-eye-view
ellipses are modeled tree crowns and color represents species identity (ACSA = Acer saccharum, BEAL = Betula alleghaniensis,

FAGR = Fagus grandifolia). (d) The plot’s normalized reflectance spectrum (see Methods for details), where the gray interval represents the

range of values observed across all spectral points within the plot and the black line represents the mean normalized reflectance. The visible

to near-infrared regions were sampled by the Compact Airborne Spectrographic Imager (CASI-1500; 454–1059 nm), and the shortwave

infrared region was sampled by the Shortwave Infrared Airborne Spectrographic Imager (SASI-640; 972.5–2412.5 nm). Gaps in the

normalized reflectance spectrum correspond to bands that were masked due to low signal-to-noise ratio or water absorption features.

ECOLOGICAL MONOGRAPHS 5 of 23
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underlying individuals so only the area of their crowns as
we would expect to be visible from above remained
(detailed in Wallis et al., 2023). We calculated relative
species abundance per plot as the sum of a species’
as-visible-from-above crown area divided by the total
as-visible-from-above crown area.

Functional dimension

For all species observed within the forest inventory plots,
we calculated species’ mean trait values for 15 foliar traits
using the Canadian Airborne Biodiversity Observatory’s
(CABO; www.caboscience.org) foliar trait database.
Species mean trait values were calculated using all indi-
vidual trees of each species within the CABO database
sampled during the 2018 and 2019 growing seasons
(30 June–1 September); this included individuals sampled
from the study sites and surrounding regions in southern
Québec (Appendix S1: Tables S3–S5). Leaf sampling and
trait quantification followed CABO’s standardized proto-
cols (detailed in Kothari et al., 2023). Mature, healthy,
and fully sunlit leaves were harvested and bulked at the
level of individuals. For each bulk leaf sample, we quanti-
fied foliar traits characterizing dry matter and water
(i.e., specific leaf area [SLA], leaf dry matter content
[LDMC], relative water content [RWC], and equivalent
water thickness [EWT]); carbon (C) and nitrogen
(N) concentrations; carbon fraction concentrations
(i.e., soluble contents, hemicellulose, cellulose, lignin,
and recalcitrant); and pigment concentrations
(i.e., chlorophyll a [chl a], chlorophyll b [chl b], chl a to
chl b ratio, and carotenoid concentration). Biochemical
concentrations are expressed per unit mass. We calcu-
lated the community weighted mean (CWM) values for
each foliar trait per forest inventory plot, where species
mean trait values were weighted by species’ relative
abundances as visible from above per plot.

Spectral dimension

Hyperspectral data were acquired as part of the CABO pro-
ject during the growing season when deciduous leaves
were fully opened and matured (Mont Mégantic: 18 July
2019, Mont St-Bruno: 8 September 2018) by the National
Research Council of Canada’s Flight Research Lab
(Appendix S1: Section S1). Two imaging spectrometers
mounted on a Twin Otter fixed-wing aircraft were used to
acquire hyperspectral data: the Compact Airborne
Spectrographic Imager (CASI-1500) and the Shortwave
Infrared Airborne Spectrographic Imager (SASI-640;
ITRES, Calgary, AB, Canada). The CASI-1500 samples

288 spectral channels covering the visible to near-infrared
(VNIR) wavelengths (375.28–1061.46 nm), and the
SASI-640 samples 100 spectral channels covering the SWIR
wavelengths (957.5–2442.5 nm). The raw hyperspectral
data underwent standard processing steps (detailed in
Inamdar et al., 2021). It was radiometrically corrected using
proprietary software developed by the sensor manufac-
turer, atmospherically corrected using ATCOR4 (Soffer
et al., 2019), and geometrically corrected using a digital sur-
face model (DSM), created from light detection and rang-
ing (LiDAR) data, produced by the Québec provincial
government (see Inamdar et al. [2021] for correction meth-
odology; DSM available at: https://www.foretouverte.gouv.
qc.ca/; Leboeuf et al., 2015). Additionally, we applied a
Lambert + Statistical-Empirical bidirectional reflectance
distribution function topographic correction (Richter &
Schläpfer, 2020). We used directly georeferenced
hyperspectral point clouds (DHPCs) rather than the more
common raster format because DHPCs preserve the
spatial–spectral integrity of the hyperspectral data without
shifts, loss, or duplication of spectral measurements, which
can be particularly problematic across topographically
complex terrain when resampling to uniform, square pixels
(Inamdar et al., 2021). The raw pixel sizes of the two sen-
sors differ and thus are not spatially aligned (Appendix S1:
Table S1). While hyperspectral reflectance across the full
spectrum (400–2400 nm) might be advantageous (but see
Imran et al., 2021), we chose not to spatially resample and
fuse the data sets because conventional spatial resampling
approaches fail to account for the spatial characteristics of
the coarser-resolution imager (i.e., spatial point spread
function; Inamdar et al., 2023). Moreover, preliminary
examinations of our data suggested that the magnitude of
support for the SVH tended to be weaker when spectral
community properties were quantified using the full-range
hyperspectral data (Appendix S1: Section S2). To this
extent, the two separate DHPC products composed of
either CASI-1500 or SASI-640 data were analyzed
separately.

We extracted all spectral points from DHPCs that cov-
ered the forest inventory plots and applied common
postprocessing steps. In brief, we masked shadowed and
nonforested spectral points, excluded low-signal
and noisy regions of the spectra, including the water
absorption regions, and applied a smoothing filter
(detailed in Appendix S1: Section S1). Additionally, to
minimize differences due to potentially varying illumina-
tion conditions during acquisition, we normalized the
spectra via continuum removal using the convex hull
band depth method in the hsdar R package (Lehnert
et al., 2019). The resulting spectral data sets contained
the normalized reflectance at 229 bands spanning
454–1059 nm for the CASI-1500 data set and 78 bands
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spanning 972–2412 nm for SASI-640 data set for all
nonshadowed, forested points covering the forest inven-
tory plots (Figure 1d). Going forward, we will refer to the
spectral data sets by the wavelength regions in which
they encompass VNIR (CASI-1500 data set) and SWIR
(SASI-640 data set).

Abiotic environment

To quantify the abiotic conditions within each forest
inventory plot, we calculated a suite of environmental
variables using the terra R package (Hijmans, 2023)
from LiDAR data products created by the Québec pro-
vincial government (Tile IDs 21E06NE and 31H11SO
for Mont Mégantic and Mont St-Bruno, respectively,
available at: https://www.foretouverte.gouv.qc.ca/;
Leboeuf et al., 2015). We derived elevation, slope,
roughness, northness, and eastness from a digital ter-
rain model, and averaged values across all pixels per
plot. Roughness was calculated as the difference
between the maximum and minimum values of a cell
and its eight surrounding cells (Wilson et al., 2007).
Northness and eastness describe aspect in a linear way,
where northness was calculated as the cosine of aspect
and eastness as the sine of aspect. Additionally, we cal-
culated the average topographic wetness index (TWI)
per plot from a TWI model.

Statistical analyses

Degree of correspondence

To examine the degree of correspondence between spec-
tral and field-based composition, we first took a multivar-
iate approach in which we conducted four symmetric
Procrustes analyses, comparing the two assessments of
spectral composition (VNIR and SWIR) with two
field-based assessments of composition (taxonomic and
functional) across all plots (n = 65) using the vegan R
package (Oksanen et al., 2022). Procrustes analyses quan-
tify the similarity in structure between two data sets that
describe the same objects (in this case plots); the data sets
of interest are first subject to ordination analyses and
then the ordinations undergo a “Procrustes” transforma-
tion, in which they are scaled, rotated, and dilated to
minimize the residual sum-of-squared distances between
the pairs of points (one pair for each plot) (Legendre &
Legendre, 2012). We used principal component analyses
(PCA) to ordinate the data sets using the vegan R pack-
age (Oksanen et al., 2022). Prior to conducting PCAs, we
Hellinger-transformed species abundances, centered and

standardized trait CWMs, and calculated the mean nor-
malized reflectance at each band per forest inventory plot
for the spectral data sets. We used the eight principal
component (PC) axes explaining more than 90% of the
variation and examined the significance of association
between the two data sets via permutation (n = 999). We
then examined the degree of linear association between
the PC axes across data sets using Pearson’s correlations
in the stats R package (R Core Team, 2021).

We examined multiple commonly used metrics per
dimension, based on different elements of diversity
(e.g., richness, evenness, and divergence) (Table 1). To
examine the strength and direction of linear associa-
tions between spectral and field-based diversity, we
estimated Pearson’s correlations between all spectral
diversity metrics and taxonomic or functional diversity
metrics (n = 59–65 plots; dependent on diversity met-
ric, given mathematical constraints relating to the
minimum number of species). Taxonomic diversity
metrics were calculated using the hillR R package (Li,
2018), except for Pielou’s evenness, which was calcu-
lated using basic operations in R (R Core Team, 2021).
Functional diversity metrics were calculated using the
FD R package (Laliberté et al., 2014). Spectral diversity
metrics were calculated using custom functions in R
(R Core Team, 2021). The functions for the coefficient
of variation (CV) and convex hull volume (CHV)
included a rarefaction step to standardize the number
of spectral points per forest inventory plot, where we
randomly selected spectral points equal to the mini-
mum number of spectral points observed across all
plots (n = 110 for VNIR; n = 95 for SWIR) and then
calculated the spectral diversity metrics. The rarefac-
tion was repeated 999 times, and we averaged the spec-
tral diversity metrics across all iterations. For CHV,
the rarefaction step occurred after computing the PCs.
Spectral variance (SV) is standardized by the number
of spectral points, so we did not include the rarefaction
step. One forest inventory plot only contained one spe-
cies, and therefore, the exponential Shannon index
(1D), inverse Simpson’s index (2D), Pielou’s evenness
(J0)’, functional dispersion (FDis), and Rao’s entropy
(RaoQ) could not be quantified (n = 64). Moreover,
functional richness (FRic), functional evenness (FEve),
and functional divergence (FDiv) could not be quanti-
fied for six plots that contained fewer than three spe-
cies (n = 59). To identify the wavelengths contributing
most to spectral diversity, we calculated the variance
in normalized reflectance at each band for each forest
inventory plot.

We use the following terms to describe the observed
strength of association: weak (r ≤ 0.3), moderate
(r = 0.31–0.6), and strong (r ≥ 0.61).
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Environmental drivers of community properties

To examine whether the relationships between
field-based community properties and the environment
can be effectively captured using hyperspectral data, we
compared how the composition and diversity of each bio-
diversity dimension varied along environmental gradi-
ents at Mont Mégantic. We used redundancy analyses
(RDAs) to examine the relationships between

composition and environment and general additive
models (GAMs) to examine the relationships between
diversity and environment. Environmental variables were
examined for collinearity, and the variables retained as
explanatory factors were elevation, slope, northness,
eastness, and TWI (jrj < 0.7). Explanatory factors were
centered and standardized prior to analyses.

We conducted separate RDAs to evaluate how envi-
ronmental conditions influenced taxonomic, functional,

TAB L E 1 Description of diversity metrics examined in this study.

Diversity metric Symbol Formula/definition Reference

Taxonomic

Species richness 0D 0D¼ S¼PS
i¼1p

0
i

Hill (1973), MacArthur (1965)

Exponential Shannon’s index 1D 1D¼ exp
�
−
PS

i¼1pi logpi1
�

Hill (1973), MacArthur (1965)

Inverse Simpson’s index 2D 2D¼ 1=
PS

i¼1p
2
i

Hill (1973), MacArthur (1965)

Pielou’s evenness index J0 J 0 ¼ ln1D=lnS Pielou (1966)

Functional

Functional richness FRic Amount of functional space filled by a
community, calculated as convex hull volume
of species in functional space

Villéger et al. (2008)

Functional evenness FEve Regularity of distribution of trait abundances in
functional space, calculated as minimum sum
of branch lengths of minimum spanning tree
that links all species, weighted by relative
abundance of species

Villéger et al. (2008)

Functional divergence FDiv Spread of distribution of trait abundances in
functional space, calculated as deviation
of species from minimal distance to center
of gravity, weighted by their relative
abundance

Villéger et al. (2008)

Functional dispersion FDis Spread of distribution of trait abundances in
functional space, calculated as mean
distance of species from centroid of
all species, weighted by their relative
abundance

Laliberté and Legendre (2010)

Rao’s entropy RaoQ Spread of distribution of trait abundances in
functional space, calculated as sum of
distances between species pairs weighted by
their relative abundance

Botta-Duk�at (2005)

Spectral

Convex hull volume CHV Amount of spectral space filled by a
community, calculated as CHV of first
three principal components of spectral
reflectance data

Dahlin (2016)

Coefficient of variation CV
CV¼

Pb

j¼1
s yjð Þ=yj
b

Wang et al. (2016)

Spectral variance SV
SV¼

Pb

j¼1

Pm

i¼1
yij − yjð Þ2

m− 1

Laliberté et al. (2020)

Note: S = number of species observed; pi = relative abundance of ith species; yj = reflectance of jth band; b¼number of spectral bands;yij = reflectance of ith
pixel/spectral point at jth band; m = number of pixels/spectral points.
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and spectral composition using the vegan R package
(Oksanen et al., 2022). We used permutation to test the
significance of the fit of the overall models, individual
canonical axes, and explanatory variables (n = 999). Like
the Procrustes analyses, we Hellinger-transformed spe-
cies abundances, centered and standardized trait CWMs,
and calculated the mean normalized reflectance at each
band per forest inventory plot for the spectral data sets
prior to conducting RDAs.

We ran separate GAMs to evaluate how environmental
conditions influenced taxonomic, functional, and spectral
diversity using the mgcv R package (Wood, 2011). We
focused on one diversity metric per biodiversity dimen-
sion, based on the strength of spectral-field-based diversity
relationships and the degree of use in the literature: expo-
nential Shannon index (1D), functional dispersion (FDis),
and spectral variance (SV). GAM is a nonparametric
regression method where the relationship between explan-
atory variables and the response variable is modeled using
smooth functions, which can be linear or nonlinear
(Larsen, 2015). We chose to model diversity using GAMs
due to the markedly nonlinear diversity–elevation rela-
tionship; all other abiotic predictors were modeled as lin-
ear. We used penalized regression splines as the
smoothing function and estimated smoothing parameters
for elevation using restricted maximum likelihood
(REML). To identify the relative importance of environ-
mental variables in a manner comparable across models,
we calculated the proportion of deviance explained by
each explanatory variable. Model assumptions were
checked visually from diagnostic residual plots, and
smoothing parameters were checked using the k-index
ratio. All statistical analysis were conducted in R version
4.1.0 (18 May 2021) (R Core Team, 2021).

RESULTS

Degree of correspondence

Composition

In multivariate analyses, spectral composition was moder-
ately associated with field-based composition (Procrustean
r = 0.50–0.59), as based on the first eight PC axes that
cumulatively explained >90% of the variation of each
dimension (herein referred to as “total” composition). The
degree of association was marginally stronger when “total”
spectral composition was characterized using VNIR wave-
lengths (average Procrustean r = 0.56) than when using
SWIR wavelengths (average Procrustean r = 0.52). Across
the VNIR wavelengths, “total” spectral composition
was marginally more associated with “total” taxonomic

composition than with “total” functional composition
(Procrustean r = 0.59, p = 0.001 and Procrustean r = 0.53,
p = 0.001, respectively). Across the SWIR wavelengths,
“total” spectral composition was similarly associated with
“total” taxonomic composition and “total” functional com-
position (Procrustean r = 0.52, p = 0.001 and Procrustean
r = 0.50, p = 0.001, respectively).

Generally, the degree of association between spectral
and field-based composition increased when only consid-
ering the major axes of compositional variation. The
main axis of taxonomic composition explained 48.6% of
the overall variation, characterizing a gradient from
deciduous, temperate forest communities to mostly conif-
erous, boreal forest communities (Figure 2a). Similarly,
the main axis of functional composition explained 58% of
the overall variation, based on intercorrelated traits
known to differ between broadleaves and needle leaves
(Figure 2b). The main axis of spectral composition across
the VNIR wavelengths explained 84.6% of the variation
and showed high negative scores across the visible wave-
lengths (Figure 2c), while the main axis of spectral com-
position across the SWIR wavelengths explained 59% of
variation and was characterized by positive scores at lon-
ger wavelengths with a peak at 2200 nm.

Across the VNIR wavelengths, the main axis of spectral
composition was strongly associated with the main axis of
taxonomic composition (r = 0.65, p < 0.001) and more
strongly associated with the main axis of functional compo-
sition (r = 0.79, p < 0.001). Across the SWIR wavelengths,
the main axis of spectral composition was not associated
with the main axis of taxonomic composition (r = −0.05,
p = 0.702) or the main axis of functional composition
(r = 0.02, p = 0.849). However, the secondary axis for
SWIR-spectral composition was strongly associated with the
main axis of taxonomic composition (r = −0.75, p < 0.001)
and the main axis of functional composition (r = −0.77,
p < 0.001). The secondary axis of SWIR-spectral composi-
tion explained 28% of variation and was characterized by
peaks at multiple wavelengths (Figure 2d). See
Appendix S1: Figure S5 for correlation matrix of the first
three PCs across spectral and field-based dimensions.

Diversity

Spectral diversity metrics were predominantly positively
related to taxonomic and functional diversity metrics;
however, the strength of association varied across spec-
tral metrics and the field-based metrics to which they
were compared (Figure 3; Table 2). On average, the
degree of association between spectral diversity and
field-based diversity was similar for taxonomic diversity
(average r = 0.319) and functional diversity (average

ECOLOGICAL MONOGRAPHS 9 of 23
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r = 0.327; Figure 3). Field-based diversity metrics were
on average more strongly associated with spectral diver-
sity metrics summarizing VNIR wavelengths (average
r = 0.382) than those summarizing SWIR wavelengths
(average r = 0.265; Figure 3). However, the relative per-
formance of different spectral diversity metrics was simi-
lar regardless of the hyperspectral data they summarized
or the field-based metric to which they were compared;

on average the CV was more weakly associated with
field-based diversity metrics than either CHV or SV (aver-
age r = 0.209, average r = 0.379, and average r = 0.382,
respectively; Figure 3). Henceforth, for spectral diversity
we will focus on the CHV and SV as quantified by nor-
malized reflectance across the VNIR wavelengths.

Spectral diversity was moderately associated with tax-
onomic diversity metrics (r = 0.336–0.559; Table 2,

−1.0

−0.5

0.0

0.5

1.0

A
C
SA

FA
G
R

Q
U
R
U
O
SVI

TSC
A

TIA
M

PR
SE

A
C
PE

B
EPO

PO
TR

A
C
R
U

B
EA

L

PIR
U

B
EPA

A
B
B
A

P
C

1
 S

c
o

re
s

Variance Explained = 49%

Taxonomica

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

SLA

C
ar

ot.

C
hl b

C
hl a

R
W

C N

H
em

i.

LD
M

C
Sol.

C
el

l.

C
hl a

:C
hl b

Lig
nin

R
ec

al
c. C

EW
T

P
C

1
 S

c
o

re
s

Variance Explained = 58%

Functionalb

−0.2

−0.1

0.0

0.1

0.2

500 600 700 800 900 1000

Wavelength (nm)

P
C

1
 S

c
o

re
s

Variance Explained = 84%

VNIR−Spectralc

−0.30

−0.15

0.00

0.15

0.30

1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

P
C

2
 S

c
o

re
s

Variance Explained = 28%

SWIR−Spectrald

Spectral Region

Blue Green Red Red Edge NIR SWIR

F I GURE 2 Ordination scores along correlated principal component (PC) axes of (a) 15 most abundant tree species along first
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spectral wavelength bands along the first VNIR–spectral PC axis, and (d) normalized reflectance across shortwave infrared (SWIR) spectral

wavelength bands along second SWIR–spectral PC axis. Species acronyms: ACSA = Acer saccharum, FAGR = Fagus grandifolium,

QURU = Quercus rubra, OSVI = Ostrya virginiana, TSCA = Tsuga canadensis, TIAM = Tilia americana, PRSE = Prunus serotina,

ACPE = A. pensylvanicum, BEPO = Betula populifolia, POTR = Populus tremuloides, ACRU = A. rubrum, BEAL = B. alleghaniensis,

PIRU = Picea rubens, BEPA = B. papyrifera, and ABBA = Abies balsamea. Functional trait acronyms: SLA = specific leaf area, Carot. =

carotenoid content, Chl b = chlorophyll b content, Chl a = chlorophyll a content, RWC = relative water content, N = nitrogen content,

Hemi. = hemicellulose content, LDMC = leaf dry mass content, Sol. = soluble carbon content, Cell. = cellulose content, Chl a:Chl b = ratio

of chlorophyll a to b, Lignin = lignin content, Recalc. = recalcitrant content, C = carbon content, and EWT = equivalent water thickness.
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Appendix S1: Figure S6). Species richness (0D) showed the
lowest correlations of the taxonomic metrics, where Pielou’s
evenness (J0), exponential Shannon’s index (1D), and inverse
Simpson’s index (2D) were approximately 1.6 times more
strongly correlated to spectral diversity than species richness
(Table 2). Similarly, spectral diversity was moderately to
strongly associated with functional diversity metrics
(r = 0.348–0.676), except for functional divergence (FDiv),
which was not significantly related to spectral diversity
(Table 2, Appendix S1: Figure S6). Of all the field-based
diversity metrics examined, Rao’s entropy (RaoQ) and func-
tional dispersion (FDis), which incorporate functional rich-
ness and divergence, showed the strongest correlations with
spectral diversity (Table 2). Functional richness (FRic) was
approximately 1.5 times less associated with spectral diver-
sity than RaoQ and functional dispersion (FDis) but was
more associated with spectral diversity than functional even-
ness (FEve) (Table 2).

Environmental drivers of community
properties

Composition

The environmental predictors explained 27% of the
variation in taxonomic composition (pseudo-F = 4.65,

p < 0.001), 28% of the variation in functional composition
(pseudo-F = 4.90, p < 0.001), and 44% of the variation
in VNIR–spectral composition (pseudo-F = 8.60,
p < 0.001; Figure 4). The first canonical axis explained
21% of total variation in taxonomic composition, 22%
of functional composition, and 41% of VNIR–spectral
composition (Figure 4). The second canonical axis
explained relatively little variation in composition,
accounting for 5% of total taxonomic variation and 6%
of total functional variation (Figure 4). For
VNIR–spectral composition, the second canonical axis
explained 3% of total compositional variation, too little
to interpret (<5%, as defined by Legendre et al. [2011]).
While spectral composition across the SWIR wave-
lengths was significantly affected by environmental
conditions, only 11% of the variation in SWIR–spectral
composition was explained by the environmental pre-
dictors (pseudo-F = 2.30, p = 0.02). Given that the vast
majority of SWIR–spectral composition is not
explained by environmental predictors (~20% more
unconstrained variance than the other dimensions;
Appendix S1: Table S3) and the relatively weak statisti-
cal support for the canonical relationship, we do not
interpret the canonical axes for this aspect of spectral
composition.

The relationships between environmental predic-
tors and field-based composition tended to be
reproduced by VNIR–spectral composition, in terms of
the relative explanatory power and the effect on per-
cent coniferous cover. Elevation explained the majority
of fitted variance in taxonomic, functional, and
VNIR–spectral composition; however, elevation
explained ~20% more fitted variance in VNIR–spectral
composition than either taxonomic or functional com-
position (Table 3). Across the dimensions, elevation
was strongly correlated with the first canonical axis
that separated broadleaved, deciduous temperate plots
from evergreen, coniferous boreal plots (average
jrj = 0.821; Figure 4). For the taxonomic and functional
dimensions, elevation was moderately associated with
the second canonical axis that separated mixed forest
plots from unmixed forest plots (i.e., either broadleaved
or coniferous) (average jrj = 0.620; Figure 4).
Northness explained the second most fitted variance in
taxonomic and functional composition, but it did not
affect VNIR–spectral composition (Table 3). For the
taxonomic and functional dimensions, northness was
strongly correlated with the second canonical axis
(average jrj = 0.712; Figure 4). Across the dimensions,
slope explained ~13% of fitted variance in taxonomic,
functional, and VNIR–spectral composition (Table 3)
and was strongly correlated with the second canonical
axis (average jrj = 0.664; Figure 4).
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F I GURE 3 Mean Pearson’s correlation with spectral diversity

derived from visible to near-infrared and shortwave infrared

wavelengths as calculated as coefficient of variation (CV), convex

hull volume (CHV), and spectral variance (SV) across field-based

diversity derived from taxonomic (n = 4) and functional (n = 5)

diversity metrics. Error bars represent SE.
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Diversity

The relationships between field-based diversity and
environmental predictors were generally reproduced
when using spectral diversity composed of the VNIR
wavelengths, both in terms of their relative explanatory
power and the shape of the relationships (Table 4;
Figure 5; Appendix S1: Figure S7). However, the abso-
lute explanatory power of environmental predictors
differed between field-based and spectral diversity.
Environmental predictors explained the majority of
observed variation in field-based diversity, explaining
65% of the variation in taxonomic diversity and
49% of the variation in functional diversity but only
32% of the variation in VNIR–spectral diversity and
35% of SWIR–spectral diversity. Elevation explained
the majority of the fitted variation in taxonomic,
functional, and VNIR–spectral diversity (Table 4).
Across these dimensions, the elevation–diversity
relationship was multimodal, with peaks at low
elevation along the valley bottom (average

elevation = 472 m; average slope = 6�) and at
mid-elevations (average elevation = 826 m; average
slope = 15�; Figure 5). Northness explained the second
most fitted variation in taxonomic, functional, and
VNIR–spectral diversity; however, the effect on taxo-
nomic diversity was weak and lacked statistical support
(Table 4). Functional and VNIR–spectral diversity
increased with northness (Appendix S1: Figure S7). In
contrast, northness and elevation explained similar
proportions of fitted variance in SWIR–spectral diver-
sity (Table 4).

DISCUSSION

We analyzed the link between spectral and field-based
expressions of canopy tree biodiversity and examined the
ability to use spectral properties to predict environmental
drivers of canopy tree communities along a
temperate-to-boreal gradient. Overall, we found support
for the SVH and aligned with theory: Spectral community

TAB L E 2 Degree of linear association between field-based diversity metrics and spectral diversity metrics, which summarize (a) the

visible to near-infrared (VNIR) wavelengths or (b) the shortwave infrared (SWIR) wavelengths, as determined by Pearson’s correlation
(n = 59–65, dependent on field-based diversity metric).

Spectral region Field-based dimension Field-based metric

Correlation with spectral diversity (Pearson’s r)

CV CHV SV

VNIR Taxonomic 0D 0.036 0.336 0.341
1D 0.192 0.521 0.539
2D 0.199 0.520 0.551

J0 0.381 0.531 0.559

Functional FRic 0.339 0.428 0.452

FEve 0.349 0.348 0.358

FDiv −0.14 −0.017 0.007

FDis 0.443 0.646 0.611

RaoQ 0.475 0.676 0.621

SWIR Taxonomic 0D 0.155 0.065 0.077
1D 0.189 0.276 0.270
2D 0.174 0.301 0.296

J0 0.233 0.485 0.422

Functional FRic 0.156 0.299 0.264

FEve −0.035 0.403 0.419

FDiv 0.118 0.047 0.105

FDis 0.240 0.493 0.492

RaoQ 0.260 0.477 0.486

Note: Bold values represent statistically significant values (p < 0.05) as determined by two-sided t-test. Taxonomic diversity metrics examined were species
richness (0D), exponential Shannon’s index (1D), inverse Simpson’s index (2D), and Pielou’s evenness (J0), and functional diversity metrics were functional
richness (FRic), functional evenness (FEve), functional divergence (FDiv), functional dispersion (FDis), and Rao’s entropy (RaoQ). Spectral diversity metrics

examined were coefficient of variation (CV), convex hull volume (CHV), and spectral variance (SV).
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properties tended to be more tightly associated with func-
tional than taxonomic community properties. However,
the degree of association was highly variable and was
dependent on the method or metric used to quantify
composition or diversity, respectively. To the best of our
knowledge, we are the first to examine the relationship
between spectral diversity and field-based metrics that
quantify different elements of functional diversity; spec-
tral diversity was most strongly associated with metrics
that quantify functional richness and divergence. We also
found that the relationships between field-based commu-
nity properties and the environment were effectively
reproduced when using hyperspectral data. Spatial trends
in canopy tree composition and diversity were strongly
associated with the turnover from temperate to boreal
communities along the elevation gradient. Overall, our
results suggest that imaging spectroscopy is a useful tool
to study biodiversity-environment relationship in north-
ern temperate forests, even in the absence of forest inven-
tory field data.

Degree of correspondence

Effect of field-based dimension on spectral-field
based relationship

In agreement with theory, we found that the degree of
association between spectral and field-based community
properties was generally greater for the functional than
the taxonomic dimension (Kothari & Schweiger, 2022;
Ustin & Gamon, 2010). Despite the understanding that
traits causally drive plant–light interactions, most tests of
the SVH have been limited to relating the spectral dimen-
sion with the taxonomic dimension (Fassnacht et al.,
2022). While species differ in their trait values, the dis-
crete nature of species identities assumes that all species
are equally (dis)similar in phenotype, whereas trait

Slope
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F I GURE 4 Redundancy analysis (RDA) triplots with type 2

scaling depicting the relationships between environmental

predictors and (a) taxonomic, (b) functional, and (c) visible to

near-infrared (VNIR)–spectral composition (n = 50). Solid black

arrows: effect of environmental predictors; gray dashed arrows:

response scores of five most correlated (a) species (ABBA = Abies

balsamea, ACSA = A. saccharum, BEAL = Betula alleghaniensis,

BEPA = B. papyrifera, and PIRU = Picea rubens), (b) traits

(Carot = carotenoid content, Chl a = chlorophyll a content,

Chl b = chlorophyll b content, EWT = equivalent water thickness,

SLA = specific leaf area), and (c) wavelengths. Length of arrow

represents strength of correlation of that variable with canonical

axes and points are the fitted plot scores.
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values and hyperspectral reflectance continuously
describe phenotypic (dis)similarity. Surprisingly, of the
studies that also examined the spectral–functional rela-
tionship, support for the SVH has not been consistently
stronger for the functional dimension (e.g., Kamoske
et al., 2022). We demonstrate that choice of method or
metric affects the degree of association between spectral
and field-based dimensions (described below). When
the SVH has been examined beyond the taxonomic
dimension, the functional dimension has been charac-
terized by a single diversity metric (e.g., Frye et al.,
2021; Kamoske et al., 2022), and differences in func-
tional diversity metric choice may explain inconsis-
tencies in the spectral–functional relationship.
Additionally, the functional dimension requires judg-
ment as to which traits to include, making it difficult to
compare studies that use different traits (van der Plas
et al., 2020; Zhu et al., 2017). Here, the functional
dimension is composed of a suite of foliar leaf traits
causally associated with foliar reflectance, including

traits that are not commonly quantified, such as carbon
fractions and pigment concentrations (Kattge et al.,
2020), under the expectation that these traits would be
closely related to the spectral dimension. Trait choice
likely affects the spectral–functional relationship, and
we argue that the inclusion of traits not related to
plant–light interactions (e.g., rooting depth, lifespan,
seed dry mass) could weaken the association between
the spectral and functional dimensions (e.g., Kamoske
et al., 2022). In circumstances where trait data are lim-
ited, characterizing communities using the phylogenetic
dimension may advance the understanding of how spec-
tral community properties relate to field-based commu-
nity properties, as phylogenetic relatedness can capture
evolved differences in traits (e.g., Schweiger & Laliberté,
2022; Wang, Gamon, Schweiger, et al., 2018). However,
the phylogenetic–spectral relationship is indirect, and
mismatches between genotype and phenotype
(e.g., convergent evolution, phenotypic plasticity) may
weaken the degree of association (Ollinger, 2011).

TAB L E 3 Proportion of fitted variance (%) that each environmental predictor variable accounted for in taxonomic composition,

functional composition, and visible to near-infrared (VNIR)–spectral composition as determined by marginal effects of redundancy

analyses (RDAs).

Parameter

Proportion of explained variance (%)

Taxonomic composition Functional composition VNIR–spectral composition

Elevation 59.59 63.71 83.32

Northness 21.98 18.43 2.98

Slope 12.65 13.91 12.22

TWI 3.45 2.07 0.97

Eastness 2.33 1.88 0.56

Note: Bold values represent statistically significant values as determined by Monte Carlo permutation testing (n = 999). For detailed model outputs, see

Appendix S1: Table S4.
Abbreviation: TWI, topographic wetness index.

TAB L E 4 Proportion of explained deviance (%) that each environmental predictor variable accounted for in taxonomic diversity

(exponential Shannon’s Index; 1D), functional diversity (functional dispersion; FDis), visible to near-infrared (VNIR)–spectral diversity
(spectral variance [SV]), and shortwave infrared (SWIR)–spectral diversity (SV) as determined by general additive models [GAMs]; n = 50).

Parameter

Proportion of explained deviance (%)

Taxonomic
diversity (1D)

Functional
diversity (FDis)

VNIR–spectral
diversity (SV)

SWIR–spectral
diversity (SV)

Elevation 93.68 71.72 67.41 47.36

Northness 4.74 26.11 22.20 47.67

Eastness 1.18 0.63 1.98 0.16

Slope 0.35 1.59 8.61 4.14

TWI 0.05 −0.06 −0.20 0.67

Note: Bold values represent statistically significant values. For detailed model outputs, see Appendix S1: Table S5.

Abbreviation: TWI, topographic wetness index.
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Effect of methods on spectral-field-based
composition relationship

Spectral composition is a relatively new concept com-
pared to spectral diversity, and, so far, the SVH has rarely
been extended to examine its relationship with
field-based composition (but see Draper et al., 2019;
Féret & Asner, 2014; Hakkenberg, Peet, et al., 2018;
Schweiger & Laliberté, 2022; Wallis et al., 2023). We
found that the maximum correspondence between spec-
tral and field-based composition was greater when relat-
ing ordination scores of primary axes of compositional
variation (i.e., bivariate relationships) than when relating
“total” composition (i.e., ordination axes that cumula-
tively accounted for >90% of compositional variation)
using a multivariate approach. However, when relating
the primary axes of compositional variation, the strength
of association was dependent on the wavelength regions
that composed spectral composition and the field-based
dimension to which it was compared but was not when
relating “total” composition.

When comparing the primary axes of compositional
variation, we found strong support for the SVH, as was
also reported by Draper et al. (2019) for Amazonian tree
communities (r2 = 0.85). In contrast, Hakkenberg, Peet,
et al. (2018), who included all vascular plants in the
field-based community, found weaker support for
the SVH in North American temperate forests
(Spearman’s r = 0.536). Here, we defined the community
as only canopy trees, potentially explaining the greater
degree of association between spectral and field-based
composition, as only the uppermost layer of vegetation is
what was imaged. Aligned with this argument, we found
that the primary axis of VNIR–spectral composition was
more tightly associated with the primary axis of func-
tional than taxonomic composition, as traits and not spe-
cies identity drive reflectance patterns (Ustin & Gamon,
2010). The primary axes of VNIR–spectral, taxonomic,
and functional composition were strongly associated and
captured the turnover from temperate to boreal commu-
nities. In contrast, the primary axis of SWIR–spectral
composition was not related to the primary axes of
field-based composition. The difference in degree of

0

1

2

3

4

5

6

7

400 600 800 1000

Elevation (m asl)

E
x
p

o
n

e
n

ti
a
l
S

h
a
n

n
o

n
In

d
e
x

(1
D

)
Taxonomica

0

1

2

3

4

400 600 800 1000

Elevation (m asl)

F
u

n
c
ti

o
n

a
l

D
is

p
e
rs

io
n

(F
D

is
)

Functionalb

0.0

0.3

0.6

0.9

400 600 800 1000

Elevation (m asl)

S
p

e
c
tr

a
l

V
a
ri

a
n

c
e

(S
V

)

VNIR−Spectralc

0 50 100

Percent Coniferous Cover

F I GURE 5 Effect of elevation meters above sea level (m asl)

on (a) taxonomic (exponential Shannon’s Index; 1D), (b) functional
(functional dispersion; FDis), and (c) visible to near-infrared

(VNIR)–spectral (spectral variance; SV) diversity as modeled by

general additive models (GAMs), where the smoothing parameter

was estimated using restricted maximum likelihood (REML;

n = 50). Smoothed function is the solid black line, gray shading

denotes SE, and points are raw data.
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association between the two spectral data sets may have
arisen because we normalized the hyperspectral data
using continuum removal (described below).

Using a multivariate approach, we found “total” spec-
tral composition was moderately related to “total”
field-based composition, which is consistent with a previ-
ous study in which plot-wise ordinations of mean spectral
reflectance were related to ordinations of taxonomic com-
position across North American biomes (average
covariance = 47%; Schweiger & Laliberté, 2022). Taking
an alternative multivariate approach, Féret and Asner
(2014) also demonstrated support for the SVH. They
found a strong association between compositional dissim-
ilarity matrices summarizing spectral composition and
taxonomic composition of Amazonian tree communities
(average Mantel’s r = 0.68). In contrast to the univariate
approach, we found the magnitude of correspondence
with the field-based dimensions to be similar regardless
of whether spectral composition was composed of either
VNIR or SWIR wavelengths. When it was composed of
the VNIR wavelengths, the degree of “total” association
was the result of the strong correspondence between the
primary axes of compositional variation across
the dimensions and weaker correspondence of the sec-
ondary axes of variation (Appendix S1: Figure S6).
However, when it was composed of the SWIR wave-
lengths, the degree of “total” association was the result of
the strong correspondence of the secondary axes of varia-
tion (Appendix S1: Figure S6). Given that secondary axes
that explain relatively small proportions of variation can
drive multivariate associations, we caution against using
the strength of multivariate association alone to draw
conclusions on the utility of spectral composition.

Effect of metric on spectral-field-based diversity
relationship

Findings from a multisite study suggest that spectral
diversity is most strongly associated with field-based
diversity in forest ecosystems (Schweiger & Laliberté,
2022); however, the number of studies examining the
SVH using fine spatial resolution hyperspectral data in
forest ecosystems has been limited and findings have
been mixed (for support see Carlson et al., 2007; Féret &
Asner, 2014; in contrast, see Kamoske et al., 2022). We
demonstrate that the choice of spectral and field-based
diversity metrics affects the degree of association, where
conclusions range from no support to strong support for
the SVH, potentially explaining inconsistencies in the
spectral-field-based diversity relationships. Going for-
ward, it is important that conclusions regarding the effi-
cacy of spectral diversity not be confounded by the

metrics used to measure it and/or the metrics used to
measure field-based diversity. Additionally, differences in
data acquisition could contribute to mixed support for
the SVH, both in terms of field methodology and
hyperspectral imaging (e.g., Rossi et al., 2021). We found
that spectral diversity composed of VNIR wavelengths
was more associated with field-based diversity than when
spectral diversity was composed of SWIR wavelengths
(discussed below). However, the effect of spectral and
field-based metrics was similar with regard to the wave-
lengths that the spectral diversity was composed of.

For the taxonomic dimension, we found that spectral
diversity was more closely associated with
abundance-weighted diversity metrics than species rich-
ness, aligning with the findings of others (Gholizadeh
et al., 2019; Oldeland et al., 2010; Schweiger & Laliberté,
2022; Wang, Gamon, Cavender-Bares, et al., 2018; Wang,
Gamon, Schweiger, et al., 2018). The importance of incor-
porating information on species evenness when relating
spectral diversity to taxonomic diversity is intuitive;
assuming equal species richness, a community with low
species evenness (e.g., one dominant species) should be
less spectrally heterogenous than a community with
higher evenness. However, species evenness alone lacks
information on species richness and, thus, information
on how many different phenotypes with presumably dif-
ferent spectral signals are present. Therefore, assuming
equal species evenness, a community with high richness
should be more spectrally heterogeneous than a commu-
nity with low richness (Wang, Gamon, Cavender-Bares,
et al., 2018; Wang, Gamon, Schweiger, et al., 2018).
Nonetheless, we found that spectral diversity was compa-
rably related to species evenness (Pielou’s evenness
index, J0) as diversity metrics that integrate both species
richness and evenness (exponential Shannon’s index and
inverse Simpson’s index, 1D and 2D, respectively). We
argue that this is driven by the positive relationship
between species evenness and functional divergence in
this system, where communities with high species even-
ness are composed of mixed forests that have high trait
divergence between broadleaf deciduous and coniferous
species and occupy large volumes of functional space
(further discussed below). However, we do not expect this
trend to hold more generally; for example, Wang,
Gamon, Cavender-Bares, et al. (2018) found spectral
diversity to be more strongly correlated with taxonomic
diversity metrics that incorporated richness and evenness
(Shannon’s index and Simpson’s index) than species
evenness alone (J0) in an experimental prairie ecosystem.

In agreement with our predictions, we found that the
maximum degree of association between spectral and
field-based diversity was greater for functional than taxo-
nomic diversity (Ustin & Gamon, 2010). Moreover,
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spectral diversity was more tightly associated with func-
tional richness than species richness. However, like taxo-
nomic diversity, the magnitude of association was
dependent on the functional diversity metric to which
spectral diversity was compared. We found spectral diver-
sity was most strongly related to functional dispersion
(FDis) and Rao’s entropy (RaoQ), two closely related met-
rics that integrate functional richness and divergence and
are weighted by species abundance (de Bello et al., 2021;
Mason et al., 2013). Spectral diversity was moderately
related to functional richness (FRic) but was not associ-
ated with functional divergence (FDiv). Functional rich-
ness, or the range of functional space occupied by a
community, is solely based on extreme trait values and is
independent of species abundances (Legras et al., 2018;
Villéger et al., 2008), indicating that species with extreme
trait values and, presumably, unique spectra strongly
affect spectral diversity regardless of the abundance in
which they occur. Unlike functional dispersion or
Rao’s entropy, functional divergence reflects the distri-
bution of species abundance in functional space inde-
pendent of functional richness, where functional
divergence is high when the most abundant species are
distributed on the margins of trait space (Villéger
et al., 2008). While one might expect a community in
which the most abundant species are functionally dis-
similar (i.e., high FDiv) to be highly spectrally heteroge-
neous, our findings suggest that spectral diversity
increases with functional dissimilarity between species
only after accounting for the range of functional space
occupied by the community. To the best of our knowl-
edge, we are the first to examine the relationship
between spectral diversity and the different elements
of functional diversity. Future studies are needed to
examine the generality of these trends.

Our results demonstrate that choice of spectral diver-
sity metric affects the degree of correspondence between
spectral and field-based diversity. Ideally, spectral diver-
sity metrics reflect characteristics of the plant community
and not values in the hyperspectral data that come from
other sources, such as spectral noise, bare-ground reflec-
tance (Gholizadeh et al., 2018), illumination geometry
(Weyermann et al., 2014), and/or standing dead biomass
(Rossi et al., 2021). Previous studies cautioned that spec-
tral metrics that are heavily influenced by extreme values
should be used with care (Gholizadeh et al., 2018; Rossi
et al., 2021). However, we found that spectral metrics that
are more influenced by extreme values (i.e., CHV and
SV) were more associated with field-based diversity met-
rics, suggesting that here extreme spectral values contain
information about the community. We speculate that this
is because closed-canopy forests consisting of mature
trees are less likely to have confounding factors (e.g., bare

ground) than ecosystems with more open canopies, such
as grasslands (Schweiger & Laliberté, 2022). Additionally,
we smoothed and normalized reflectance spectra poten-
tially minimizing or removing extreme spectral values
from other sources.

Environmental drivers of community
properties

If variation in hyperspectral reflectance profiles is
assumed to be an expression of variation in taxonomic
and functional identity (Cavender-Bares et al., 2017;
Kothari & Schweiger, 2022), one would expect spatial
patterns in spectral community properties along environ-
mental gradients to mirror changes in field-based com-
munity properties. Despite calls for a wider application of
hyperspectral data (Cavender-Bares et al., 2017;
Kothari & Schweiger, 2022), few studies have extended
the SVH to assess the ability to examine ecological pro-
cesses via spectral community properties (but see
Schweiger et al., 2018; Wallis et al., 2023; Williams et al.,
2021). The same qualitative conclusions about the envi-
ronmental drivers of canopy tree community properties
at Mont Mégantic arose when modeled using either spec-
tral or field-based community properties. However, this
was only the case when spectral properties were quanti-
fied using VNIR but not SWIR wavelengths. This aligns
with our findings from the degree-of-correspondence
analyses, as spectral properties quantified using VNIR
wavelengths were more strongly related to field-based
properties. The extent to which spectral community prop-
erties can be applied to examine ecological phenomena is
dependent on sufficiently tight associations with
field-based community properties. The observed spatial
patterns in taxonomic, functional, and VNIR–spectral
composition and diversity were strongly related to the
temperate-to-boreal gradient.

The transition from temperate to boreal communities
along eastern North American mountainsides is visually
striking, and, unsurprisingly, elevation explained the
majority of fitted variation in taxonomic and functional
composition, a conclusion also derived from modeling
VNIR-spectral composition. While climate plays a key role
in driving composition change along elevation gradients
(Cogbill & White, 1991; Foster & D’Amato, 2015), other
environmental factors, particularly soil properties, that
covary with elevation also influence the turnover from
temperate to boreal communities (Carteron et al., 2020).
When these additional environmental factors do not covary
with broad climate gradients, they can result in fine-scale
heterogeneity in species composition (Goldblum & Rigg,
2010). For example, we found that slope affected taxonomic
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and functional composition: At low elevation, slope sepa-
rated deciduous from mixed forest communities—again, a
conclusion also derived from modeling VNIR-spectral
composition. This pattern is attributed to cold-air pooling,
where downslope drainage of cold air results in lower tem-
peratures in low-lying depressions and valleys (i.e., flatter
slopes) and selects for increased coniferous cover, both
boreal and temperate conifer species, compared to sur-
rounding temperate communities (Cogbill & White, 1991;
Goldblum & Rigg, 2010; Pastore et al., 2022). Moreover,
we found that aspect (i.e., northness) affected taxonomic
and functional composition, driven by mid-elevation plots
characterized by mixed forest communities with a rela-
tively high abundance of red spruce and high CWM of lig-
nin concentration. More northern-facing slopes
presumably are characterized by colder conditions that
select for increased abundance of boreal species (Cogbill &
White, 1991), but contrasting patterns have also been dem-
onstrated (Foster & D’Amato, 2015). Nevertheless, the
effect of aspect observed here might be an artifact of plot
distribution as most mid-elevation plots, where red spruce
is generally most abundant (Marcotte & Grandtner, 1974),
were established on more northern-facing slopes
(Appendix S1: Figure S8). Regardless, unlike elevation and
slope, aspect did not affect VNIR-spectral composition,
suggesting that spectral composition is limited to detecting
broad compositional changes (i.e., temperate-to-boreal
turnover) and not finer changes associated with variation
in the abundance of individual species.

Elevation also explained the vast majority of fitted vari-
ation in taxonomic, functional, and VNIR–spectral diver-
sity. We observed a multimodal pattern, where taxonomic
and functional diversity was greatest at low-elevation plots
located along the valley bottom and at mid-elevation plots,
a conclusion also derived by modeling VNIR–spectral
diversity relationships. Similar relationships between
diversity metrics should not be surprising since they repre-
sent aspects of the same phenomenon (Morris et al., 2014).
Here, communities with the greatest diversity are mixed
forest communities, composed of both broadleaved tem-
perate and coniferous boreal species that occupy different
ends of the foliar trait continuum (i.e., high trait diver-
gence). Ecotonal communities like these are often consid-
ered to have higher diversity, potentially driven by relaxed
constraints on co-existence (He et al., 2023). Additionally,
functional diversity increased with the degree of
northness, driven by mid-elevation mixed forest communi-
ties. In contrast, aspect did not affect taxonomic diversity
because the mixed forest communities at low elevations
were more diverse than those at mid-elevations due to
increased species richness. In line with theory and findings
from degree-of-correspondence analyses, conclusions
drawn from modeling VNIR–spectral diversity mirrored

functional diversity, and not taxonomic diversity, where
VNIR–spectral diversity increased with the degree of
northness. As with the effect of aspect on composition, we
argue that the effect on functional and VNIR–spectral
diversity is a spurious result driven by plot distribution
(Appendix S1: Figure S8).

Importance of wavelengths

Field-based community properties were strongly related
to the turnover from broadleaved, deciduous temperate
forests to coniferous boreal forests. Functionally, broad-
leaf, deciduous angiosperms and evergreen conifers
occupy opposite positions along a continuum of foliar
traits, with coniferous species characterized by relatively
low N content, specific leaf area (SLA), and photosyn-
thetic activity (Díaz et al., 2016; Reich, 2014). Beyond
foliar traits, which composed the functional dimension
here, these clades also differ in crown architecture, with
deciduous angiosperms characterized by decurrent
growth and ellipsoidal crowns, as opposed to coniferous
species that are characterized by excurrent growth and
canonical crowns (Brown et al., 1967; Walker & Kenkel,
2000). Spectrally, the NIR–SWIR region (specifically,
750–1400 nm) is generally considered important for
distinguishing these two clades, with canopy reflectance
generally lower for coniferous canopies than broadleaf,
deciduous canopies (Hovi et al., 2018; Ollinger, 2011;
Williams, 1991). At the community level, whole-canopy
reflectance profiles (i.e., spectral composition) represent
the integrated effects of foliar and crown traits and is
influenced by multiple species (Ollinger, 2011). Not only
are foliar traits of evergreen needles causally and correla-
tively associated with lower NIR–SWIR reflectance com-
pared to deciduous broadleaves (Jacquemoud & Ustin,
2019; Ollinger, 2011), but coniferous crown architecture
is also associated with lower NIR–SWIR reflectance
(Rautiainen & Stenberg, 2005; Smolander & Stenberg,
2003). Nevertheless, we found that mean normalized
reflectance in the visible region captured the turnover in
composition from broadleaf, deciduous communities to
coniferous communities (i.e., the primary axis of
VNIR–spectral composition; Figure 2d). Moreover, the
visible region most strongly contributed to spectral diver-
sity as quantified by SV, where mixed forest plots had the
greatest within-plot variance in the normalized reflec-
tance in the visible region (Appendix S1: Figure S4). We
argue that the importance of the visible region is likely
due to the fact that we normalized the hyperspectral data
using continuum removal.

Continuum removal is a brightness normalization
technique that can address illumination differences that
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may remain in imagery after standard processing proce-
dures and could introduce spurious spectral variation
(Serbin & Townsend, 2020). This procedure emphasizes
differences in absorption features and suppresses varia-
tion in overall brightness among spectra (Clark & Roush,
1984), reducing the effects of changing illumination con-
ditions among and between flightlines but also reducing
canopy structural effects (Serbin & Townsend, 2020).
Given that pigments show strong absorption features in
the visible region (Jacquemoud & Baret, 1990; Ustin
et al., 2009) and that pigment content differs between
broadleaf deciduous and coniferous species (Li et al.,
2018), it is unsurprising that we found a tighter degree of
association with field-based communities properties with
spectral community properties composed of VNIR wave-
lengths. While other biochemicals have known, albeit
weak, absorption features in the SWIR and differ
between the two clades (e.g., cellulose and lignin con-
tent), these absorption features are often overlapping
(Curran, 1989), which might explain why the degree of
association between spectral and field-based community
properties was weaker when they were composed of
SWIR wavelengths. The predictive capacity of spectral
community properties will likely depend on the wave-
lengths of which they are composed (Appendix S1:
Section S2; Imran et al., 2021); however, the importance
of wavelengths will likely depend on methodological
choices surrounding spectral transformation techniques
(Aneece et al., 2017). In addition to the wavelengths sam-
pled, the two hyperspectral data sets here also differ in
other properties that might contribute to the
SWIR–spectral community properties being less strongly
associated with field-based community properties. The
SWIR–spectral data have a lower spatial and spectral res-
olution; however, they cover a larger spectral range.

CONCLUSIONS

The simplicity of the SVH makes spectral community
properties an intriguing approach for quantifying plant
biodiversity from hyperspectral data, especially because
they can be quantified directly from imagery without a
priori field knowledge. Choosing the method or metric
used to quantify community properties, both field-based
and spectral, is an important methodological step. We
demonstrate that these methodological decisions affect
conclusions regarding the utility of the spectral commu-
nity property approach. To move toward a consensus on
what methods and metrics perform best, it is critical that
additional studies examine the relationships between the
various ways to quantify spectral and field-based commu-
nity properties. A particular focus should be placed on

properties that go beyond taxonomic diversity, as the
SVH has most commonly been examined using taxo-
nomic diversity metrics. Comparing results across studies
may be complicated by additional factors that can influ-
ence the degree of association between spectral and
field-based community properties, including factors asso-
ciated with field and spectral data acquisition, spectral
transformation techniques and wavelength regions used,
and ecosystem specific properties (i.e., plant size, abun-
dance, and timing of nonphotosynthetic materials).

While imaging spectrometers are usually presented as
important instruments for monitoring plant biodiversity,
we show that spectral community properties have the
potential to further our understanding on the distribution
of community properties across space. Using spectral com-
munity properties can help overcome methodological limi-
tations of field-based studies, such as relatively small
sample sizes, limited spatial coverage, and lack of in situ
trait measurements. However, using spectral community
properties is not without challenges as we currently do not
understand all the phenotypic variation that drive spectra,
some of which may not be important for plant fitness or
function (Kothari & Schweiger, 2022). Understanding how
spectral community properties relate to field-based com-
munity properties is a crucial first step—if they are not
sufficiently associated, ecological conclusions derived from
spectral community properties might not align with those
derived using field-based community properties. Future
multisite studies are needed to examine the generality of
the spectral variation hypothesis across temperate and
boreal forest ecosystems. We would recommend that these
studies, and studies in general examining the SVH, be
conducted in such a way as to carefully consider the
method or metric used to quantify community properties.
We recognize that plant phenological changes and other
temporal differences (e.g., drought stress, mast years) can
result in large temporal variation in hyperspectral reflec-
tance and, thus, influence the link between spectral and
field-based community properties (Fassnacht et al., 2022).
Our findings are limited to peak growing season, a timing
that aligns with standardized foliar functional trait proto-
cols (Pérez-Harguindeguy et al., 2013) and that will be
most practical to replicate in other surveys, including
resurveys of the same sites. With these caveats in mind,
future studies could use spatial patterns in spectral compo-
sition and diversity to test hypotheses on community
assembly processes or elucidate drivers of ecosystem func-
tion across broad gradients spanning temperate to boreal
ecosystems.
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